图文讲解java垃圾回收机制

简介: 图文讲解java垃圾回收机制

1. JAVA GC 概述



JAVA GC采用了分代思想,将java堆分成新生代,年老代,永久代。GC算法主要有标记-清除,标记-压缩,复制算法。

  • 新生代:新生代被分成三个部分 eden区和2个survivor区(from和to两个分区)。当创建对象,需要jvm分配内存时,会在新生代的eden区寻找合适的内存区域。如果当eden区内存不够时,会触发minor GC。eden区存活对象和from区的存活对象将会被复制到to区。当to区的对象年龄超过了晋升的年龄设置,对象将被提升到老年代。新生代GC用的是复制算法
  • 年老代: 年老代里存放的都是存活时间较久的,大小较大的对象,因此年老代使用标记整理算法。当年老代容量满的时候,会触发一次Major GC(full GC),回收年老代和年轻代中不再被使用的对象资源。年老代算法用的是标记-清除
  • 永久代:指内存的永久保存区域,主要存放Class和Meta(元数据)的信息。Class在被加载的时候被放入永久区域。它和和存放实例的区域不同,GC不会在主程序运行期对永久区域进行清理。所以这也导致了永久代的区域会随着加载的Class的增多而胀满,最终抛出OOM异常。


2. 图文描述标记-清除和标记-压缩



Step 1:标记(Marking)


GC的第一步叫做标记。在这个步骤GC通过遍历内存区辨别哪些内存在使用,哪些内容没有使用。并做好标记


image.png

如上图蓝色的表示存活的对象,金黄色表示垃圾对象。在标记阶段,需要扫描整个该内存区的对象,并标记。这个过程可能会比较耗时


Step 2: 清除(Normal Deletion)


清除阶段移除掉垃圾对象,并且用一个链表维护空闲的区域


image.png

内存分配器持有空闲内存区的引用,以便分配内存给新的对象


Step 2a: 压缩(Deletion with Compacting)


为了提升性能,在Step 2的基础上,在删除完垃圾对象后。我们可以把存活的对象移动到内存区的头部。这样下次分配内存的时候会更快。主要原因是标记-清除会造成比较大的内存碎片,每当需要分配内存时,都需要遍历空闲链表。而压缩算法,会把内存碎片整理成一个大的完整内存块。


image.png

3. 分代垃圾回收


3.1 为什么要采用分代垃圾回收?



正如前面所说,标记和压缩对象,对java虚拟机而言会比较耗时。当java虚拟机分配了越来越多的对象后。GC所花费的时间将会更长。然而根据经验分析,绝大多数的对象存活时间都比较短。这样我们可以把存活长的对象和存活短的对象隔离开。这样GC会更加高效


image.png


3.2 JVM分代


将jvm堆内存分割成更小的内存区,会提高jvm的gc性能。堆被分成 (新生代)Young Generation,(年老代)Old or Tenured Generation, and (永久代)Permanent Generation


image.png


  • 所有的对象都会在新生代中分配内存。当新生代内存不够的时候。将会出发minor GC。如果新生代中的对象存活时间都很短,那么minor GC的效率将会很高。如果新生代里面充满了垃圾对象,那么回收速度将会很快(因为标记的时间短了)。一些存活下来的对象年龄将会增加,并且最终会被移动到年老代
  • Stop the World Event:所有的minor GC都是"Stop the World"事件。这意味着除了GC线程,程序的其他线程对将暂停知道GC完成。Minor GC都是Stop the World Event
  • 年老代是用来存储长存活时间的对象。典型的我们可以给对象设定一个年龄界限,当新生代的对象存活年龄超过这个界限,对象将会从新生代移动到年老代。当年老代的内存不够的时候,将会出发Major GC。Major GC也是Stop the World Event。通常来说Major GC比Minor GC更慢,因为Major GC回收的是整个新生代和年老代的所有垃圾对象。因此对于响应性高的程序,应该尽量减少Major GC。需要注意的是Stop the World Event的时间受到在年老代中使用的垃圾回收器的影响,不受新生代的影响
  • 永久代包含了JVM的元数据。包括类信息,方法信息等。永久代由JVM在应用运行期生成。另外 javase的类库中的类信息也可能存放在这里


3.3 分代垃圾回收的处理过程


现在你明白为什么堆分成不同的世代,现在是时候看看这些空间是如何相互作用的。 下面的图片将介绍JVM中的对象分配和老化过程。


1. 一开始,任何新的对象都会在eden空间分配内存,两个survivor空间一开始都是空的


image.png

2. 当eden空间被填满了,minor GC将被触发


image.png


S0 survivor区对象里的 1 3表示对象的年龄


3. Eden空间的存活的对象将被复制到第一个survivor空间,年龄+1,垃圾对象将会被清除掉


image.png


4. 下一次minor GC发生时,Eden空间的存活对象将被复制到空闲的survivor空间S1(年龄+1),另外在前一次minor GC S0空间的存活对象也会被复制到S1(年龄+1),垃圾对象会被清除掉

image.png


5. 下一次minor GC发生时,还是重复第4条的内容,只是两个survivor空间对调了,这次是从S1复制到S0空间

image.png

6. 新生代晋升到年老代。当minor GC发生时,如果survivor空间中的对象年龄超过了晋升的年龄限定,对象会被复制到年老代

image.png

7. 当minor GC不断触发,将会有对象不断被晋升到年老代



image.png

8. 上面的图文完美的解释了minor GC的处理过程。最终,当年老代的内存被填满的时候,将会触发major GC。Major GC在年老代用的是标记压缩算法。同时新生代的对象将被清除

image.png


相关文章
|
4天前
|
监控 算法 Java
深入理解Java的垃圾回收机制
【10月更文挑战第22天】在Java的世界里,有一个默默无闻却至关重要的角色——垃圾回收(Garbage Collection, GC)。就像城市的清洁工一样,它默默地清理着不再使用的内存空间,确保我们的程序运行得既高效又稳定。但你真的了解垃圾回收是如何工作的吗?让我们一起探索这个看似简单却充满奥秘的过程,看看它是如何影响你的Java应用性能的。
|
13天前
|
存储 监控 算法
Java中的内存管理与垃圾回收机制解析
本文深入探讨了Java编程语言中的内存管理方式,特别是垃圾回收机制。我们将了解Java的自动内存管理是如何工作的,它如何帮助开发者避免常见的内存泄漏问题。通过分析不同垃圾回收算法(如标记-清除、复制和标记-整理)以及JVM如何选择合适的垃圾回收策略,本文旨在帮助Java开发者更好地理解和优化应用程序的性能。
|
22天前
|
算法 Java 开发者
Java中的垃圾回收机制:从原理到实践
Java的垃圾回收机制(Garbage Collection, GC)是其语言设计中的一大亮点,它为开发者提供了自动内存管理的功能,大大减少了内存泄漏和指针错误等问题。本文将深入探讨Java GC的工作原理、不同垃圾收集器的种类及它们各自的优缺点,并结合实际案例展示如何调优Java应用的垃圾回收性能,旨在帮助读者更好地理解和有效利用Java的这一特性。
|
24天前
|
监控 算法 Java
Java中的内存管理:理解垃圾回收机制
【10月更文挑战第2天】 在本文中,我们将深入探讨Java编程语言中的内存管理机制,特别是垃圾回收机制。我们将从基本原理、垃圾回收算法到实际应用场景全面解析,帮助你更好地理解和优化Java应用的内存使用。无论你是初学者还是有经验的开发者,这篇文章都能带给你新的启发和思考。
29 2
|
16天前
|
存储 监控 算法
深入理解Java内存模型与垃圾回收机制
【10月更文挑战第10天】深入理解Java内存模型与垃圾回收机制
16 0
|
16天前
|
监控 算法 Java
Java中的垃圾回收机制深度解析
【10月更文挑战第10天】 本文深入探讨了Java语言核心特性之一的垃圾回收机制(Garbage Collection, GC),揭示了其在内存管理中的关键角色。通过对GC的工作原理、分类、算法以及调优策略的细致分析,旨在帮助开发者更好地理解并有效利用这一机制,提升Java应用的性能与可靠性。不同于常规摘要,本文聚焦于为读者提供一份关于Java GC全面而深入的解读,助力把握Java内存管理的精髓。
|
25天前
|
监控 算法 Java
Java中的内存管理:理解垃圾回收机制
本文深入探讨了Java编程语言中的内存管理,特别是其垃圾回收机制。我们将从基本原理出发,逐步解析垃圾回收的工作流程、优缺点以及如何通过编程实践优化应用性能。此外,文章还将讨论Java 11中引入的ZGC(Z Garbage Collector)这一新兴技术,帮助读者更好地理解和利用现代Java环境中的内存管理特性。
一个利用System.gc和finalize研究Java垃圾回收机制的练习
一个利用System.gc和finalize研究Java垃圾回收机制的练习
111 0
|
3天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
71 38
|
1天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?