缓存实战(一)剖析缓存常见问题

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 缓存实战(一)剖析缓存常见问题

本文主要内容如下:

上一篇讲到如何做性能调优的方法,比如给表加索引、动静分离、减少不必要的日志打印。但有一个很强大的优化方式没有提到,那就是加缓存,比如查询小程序的广告位配置,因为没什么人会去频繁的改,将广告位配置丢到缓存里面再适合不过了。那我们就给开源 Spring Cloud 实战项目 PassJava 加下缓存来提升下性能。

我把后端前端小程序都上传到同一个仓库里面了,大家可以通过 Github码云访问。地址如下:

Github: https://github.com/Jackson0714/PassJava-Platform

码云https://gitee.com/jayh2018/PassJava-Platform

配套教程:www.passjava.cn

在实战之前,我们先来看下使用缓存的原理和问题。

一、缓存

1.1 为什么要用缓存

20 年前常见的系统就是单机的,比如 ERP 系统,对性能要求不高,使用缓存的并不常见,但现如今,已经步入到互联网时代,高并发、高可用、高性能总是被提起,而缓存在这“三高”中立下汗马功劳。

我们通过会将部分数据放入缓存中,来提高访问速度,然后数据库承担存储的工作。

那么哪些数据适合放入缓存中呢?

  • 即时性。例如查询最新的物流状态信息。
  • 数据一致性要求不高。例如门店信息,修改后,数据库中已经改了,5 分钟后缓存中才是最新的,但不影响功能使用。
  • 访问量大且更新频率不高。比如首页的广告信息,访问量,但是不会经常变化。

当我们想要查询数据时,使用缓存的流程如下:

读模式缓存使用流程

1.2 本地缓存

最简单的使用缓存的方式就是用本地缓存。

比如现在有一个需求,前端小程序需要查询题目的类型,而题目类型放在小程序的首页在,访问量是非常高的,但是又不是经常变化的数据,所以可以将题目类型数据放到缓存中。

最简单的使用缓存的方式是使用本地缓存,也就是在内存中缓存数据,可以用 HashMap、数组等数据结构来缓存数据。

1.2.1 不使用缓存

我们先来看下不使用缓存的情况:前端的请求先经过网关,然后请求到题目微服务,然后查询数据库,返回查询结果。

再来看下核心代码是怎么样的。

先自定义一个 Rest API 用来查询题目类型列表,数据是从数据库查询出来后直接返回给前端。

@RequestMapping("/list")
public R list(){
    // 从数据库中查询数据
    typeEntityList = ITypeService.list(); 
    return R.ok().put("typeEntityList", typeEntityList);
}

1.2.2 使用缓存

来看下使用缓存的情况:前端先经过网关,然后到题目微服务,先判断缓存中有没有数据,如果没有,则查询数据库再更新缓存,最后返回查询到的结果。

那我们现在创建一个 HashMap 来缓存题目的类型列表:

private Map<String, Object> cache = new HashMap<>();

先获取缓存的类型列表

List<TypeEntity> typeEntityListCache = (List<TypeEntity>) cache.get("typeEntityList");

如果缓存中没有,则先从数据库中获取。当然,第一次查询缓存时,肯定是没有这个数据的。

// 如果缓存中没有数据
if (typeEntityListCache == null) {
  System.out.println("The cache is empty");
  // 从数据库中查询数据
  List<TypeEntity> typeEntityList = ITypeService.list();
  // 将数据放入缓存中
  typeEntityListCache = typeEntityList;
  cache.put("typeEntityList", typeEntityList);
}
return R.ok().put("typeEntityList", typeEntityListCache);

我们用 Postman 工具来看下查询结果:

请求URL:https://github.com/Jackson0714/PassJava-Platform

返回了题目类型列表,共 14 条数据。

以后再次查询时,因为缓存中已经有该数据了,所以直接走缓存,不会再从数据库中查询数据了。

从上面的例子中我们可以知道本地缓存有哪些优点呢?

  • 减少和数据库的交互,降低因磁盘 I/O 引起的性能问题。
  • 避免数据库的死锁问题。
  • 加速相应速度。

当然,本地缓存也存在一些问题:

  • 占用本地内存资源。
  • 机器宕机重启后,缓存丢失。
  • 可能会存在数据库数据和缓存数据不一致的问题。
  • 同一台机器中的多个微服务缓存的数据不一致。

  • 集群环境下存在缓存的数据不一致的问题。

基于本地缓存的问题,我们引入了分布式缓存 Redis 来解决。

二、缓存 Redis

2.1 Docker 安装 Redis

首先需要安装 Redis,我是通过 Docker 来安装 Redis。另外我在 ubuntu 和 Mac M1 上都装过 docker 版的 Redis,大家可以参照这两篇来安装。

《Ubuntu 上到 Docker 安装redis》

《M1 运行 Docker》

2.2 引入 Redis 组件

我用的是 passjava-question 微服务,所以是在 passjava-question 模块下的配置文件 pom.xml 中引入 redis 组件。

文件路径:/passjava-question/pom.xml

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2.3 测试 Redis

我们可以写一个测试方法来测试引入的 redis 是否能存数据,以及能否查出存的数据。

我们都是使用 StringRedisTemplate 库来操作 Redis,所以可以自动装载下 StringRedisTemplate

@Autowired
StringRedisTemplate stringRedisTemplate;

然后在测试方法中,测试存储方法:ops.set(),以及 查询方法:ops.get()

@Test
public void TestStringRedisTemplate() {
    // 初始化 redis 组件
    ValueOperations<String, String> ops = stringRedisTemplate.opsForValue();
    // 存储数据
    ops.set("悟空", "悟空聊架构_" + UUID.randomUUID().toString());
    // 查询数据
    String wukong = ops.get("悟空");
    System.out.println(wukong);
}

set 方法的第一个参数是 key,比如示例中的 “悟空”。

get 方法的参数也是 key。

最后打印出了 redis 中 key = “悟空” 的缓存的值:

另外也可以通过客户端工具来查看,如下图所示:

我下载的是这个软件:Redis Desktop Manager windows下载地址:

http://www.pc6.com/softview/SoftView_450180.html

2.4 用 Redis 改造业务逻辑

用 redis 替换 hashmap 也不难,把用到hashmap 到都用 redis 改下。另外需要注意的是:

从数据库中查询到的数据先要序列化成 JSON 字符串后再存入到 Redis 中,从 Redis 中查询数据时,也需要将 JSON 字符串反序列化为对象实例。

public List<TypeEntity> getTypeEntityList() {
  // 1.初始化 redis 组件
  ValueOperations<String, String> ops = stringRedisTemplate.opsForValue();
  // 2.从缓存中查询数据
  String typeEntityListCache = ops.get("typeEntityList");
  // 3.如果缓存中没有数据
  if (StringUtils.isEmpty(typeEntityListCache)) {
    System.out.println("The cache is empty");
    // 4.从数据库中查询数据
    List<TypeEntity> typeEntityListFromDb = this.list();
    // 5.将从数据库中查询出的数据序列化 JSON 字符串
    typeEntityListCache = JSON.toJSONString(typeEntityListFromDb);
    // 6.将序列化后的数据存入缓存中
    ops.set("typeEntityList", typeEntityListCache);
    return typeEntityListFromDb;
  }
  // 7.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象
  List<TypeEntity> typeEntityList = JSON.parseObject(typeEntityListCache, new TypeReference<List<TypeEntity>>(){});
  return typeEntityList;
}

整个流程如下:

  • 1.初始化 redis 组件。
  • 2.从缓存中查询数据。
  • 3.如果缓存中没有数据,执行步骤 4、5、6。
  • 4.从数据库中查询数据
  • 5.将从数据库中查询出的数据转化为 JSON 字符串
  • 6.将序列化后的数据存入缓存中,并返回数据库中查询到的数据。
  • 7.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象

2.5 测试业务逻辑

我们还是用 postman 工具进行测试:

通过多次测试,第一次请求会稍微慢点,后面几次速度非常快。说明使用缓存后性能有提升。

另外我们用 Redis 客户端看下结果:

Redis key = typeEntityList,Redis value 是一个 JSON 字符串,里面的内容是题目分类列表。

三、缓存穿透、雪崩、击穿

高并发下使用缓存会带来的几个问题:缓存穿透、雪崩、击穿。

3.1 缓存穿透

3.1.1 缓存穿透的概念

缓存穿透指一个一定不存在的数据,由于缓存未命中这条数据,就会去查询数据库,数据库也没有这条数据,所以返回结果是 null。如果每次查询都走数据库,则缓存就失去了意义,就像穿透了缓存一样。

3.1.2 带来的风险

利用不存在的数据进行攻击,数据库压力增大,最终导致系统崩溃。

3.1.3 为什么会产生缓存穿透

  • 业务层误操作:缓存中的数据和数据库中的数据被误删除了,所以缓存和数据库中都没有数据;
  • 恶意攻击:专门访问数据库中没有的数据。

3.1.4 解决方案

  • 对结果 null 进行缓存,并加入短暂的过期时间。
  • 使用布隆过滤器快速判断数据是否存在,避免从数据库中查询数据是否存在,减轻数据库压力。
  • 前端进行请求检测。把恶意的请求(例如请求参数不合理、请求参数是非法值、请求字段不存在)直接过滤掉,不让它们访问后端缓存和数据库。

    3.2 缓存雪崩

3.2.1 缓存雪崩的概念

缓存雪崩是指我们缓存多条数据时,采用了相同的过期时间,比如 00:00:00 过期,如果这个时刻缓存同时失效,而有大量请求进来了,因未缓存数据,所以都去查询数据库了,数据库压力增大,最终就会导致雪崩。

3.2.2 带来的风险

尝试找到大量 key 同时过期的时间,在某时刻进行大量攻击,数据库压力增大,最终导致系统崩溃。

3.2.3 解决方案

在原有的实效时间基础上增加一个碎挤汁,比如 1-5 分钟随机,降低缓存的过期时间的重复率,避免发生缓存集体实效。

3.3 缓存击穿

3.3.1 缓存击穿的概念

某个 key 设置了过期时间,但在正好失效的时候,有大量请求进来了,导致请求都到数据库查询了。

3.3.2 解决方案

大量并发时,只让一个请求可以获取到查询数据库的锁,其他请求需要等待,查到以后释放锁,其他请求获取到锁后,先查缓存,缓存中有数据,就不用查数据库。

四、加锁解决缓存击穿

怎么处理缓存穿透、雪崩、击穿的问题呢?

  • 对空结果进行缓存,用来解决缓存穿透问题。
  • 设置过期时间,且加上随机值进行过期偏移,用来解决缓存雪崩问题。
  • 加锁,解决缓存击穿问题。另外需要注意,加锁对性能会带来影响。

这里我们来看下用代码演示如何解决缓存击穿问题。

我们需要用 synchronized 来进行加锁。当然这是本地锁的方式,分布式锁我们会在下篇讲到。

public List<TypeEntity> getTypeEntityListByLock() {
  synchronized (this) {
    // 1.从缓存中查询数据
    String typeEntityListCache = stringRedisTemplate.opsForValue().get("typeEntityList");
    if (!StringUtils.isEmpty(typeEntityListCache)) {
      // 2.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象,并返回结果
      List<TypeEntity> typeEntityList = JSON.parseObject(typeEntityListCache, new TypeReference<List<TypeEntity>>(){});
      return typeEntityList;
    }
    // 3.如果缓存中没有数据,从数据库中查询数据
    System.out.println("The cache is empty");
    List<TypeEntity> typeEntityListFromDb = this.list();
    // 4.将从数据库中查询出的数据序列化 JSON 字符串
    typeEntityListCache = JSON.toJSONString(typeEntityListFromDb);
    // 5.将序列化后的数据存入缓存中,并返回数据库查询结果
    stringRedisTemplate.opsForValue().set("typeEntityList", typeEntityListCache, 1, TimeUnit.DAYS);
    return typeEntityListFromDb;
  }
}
  • 1.从缓存中查询数据。
  • 2.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象,并返回结果。
  • 3.如果缓存中没有数据,从数据库中查询数据。
  • 4.将从数据库中查询出的数据序列化 JSON 字符串。
  • 5.将序列化后的数据存入缓存中,并返回数据库查询结果。

五、本地锁的问题

本地锁只能锁定当前服务的线程,如下图所示,部署了多个题目微服务,每个微服务用本地锁进行加锁。

本地锁在一般情况下没什么问题,但是当用来锁库存就有问题了:

  • 1.当前总库存为 100,被缓存在 Redis 中。
  • 2.库存微服务 A 用本地锁扣减库存 1 之后,总库存为 99。
  • 3.库存微服务 B 用本地锁扣减库存 1 之后,总库存为 99。
  • 4.那库存扣减了 2 次后,还是 99,就超卖了 1 个。

那如何解决本地加锁的问题呢?

缓存实战(中篇):实战分布式锁。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
8月前
|
XML 存储 缓存
【深入浅出Spring原理及实战】「缓存Cache开发系列」带你深入分析Spring所提供的缓存Cache管理器的实战开发指南(修正篇)
【深入浅出Spring原理及实战】「缓存Cache开发系列」带你深入分析Spring所提供的缓存Cache管理器的实战开发指南(修正篇)
123 0
|
5月前
|
缓存 安全 Android开发
Android经典实战之用Kotlin泛型实现键值对缓存
本文介绍了Kotlin中泛型的基础知识与实际应用。泛型能提升代码的重用性、类型安全及可读性。文中详细解释了泛型的基本语法、泛型函数、泛型约束以及协变和逆变的概念,并通过一个数据缓存系统的实例展示了泛型的强大功能。
48 2
|
3月前
|
canal 缓存 NoSQL
缓存常见问题总结
缓存常见问题总结
|
8月前
|
存储 XML 缓存
【深入浅出Spring原理及实战】「缓存Cache开发系列」带你深入分析Spring所提供的缓存Cache功能的开发实战指南(一)
【深入浅出Spring原理及实战】「缓存Cache开发系列」带你深入分析Spring所提供的缓存Cache功能的开发实战指南
492 0
|
5月前
|
缓存 NoSQL 数据库
go-zero微服务实战系列(五、缓存代码怎么写)
go-zero微服务实战系列(五、缓存代码怎么写)
|
5月前
|
缓存 NoSQL Java
惊!Spring Boot遇上Redis,竟开启了一场缓存实战的革命!
【8月更文挑战第29天】在互联网时代,数据的高速读写至关重要。Spring Boot凭借简洁高效的特点广受开发者喜爱,而Redis作为高性能内存数据库,在缓存和消息队列领域表现出色。本文通过电商平台商品推荐系统的实战案例,详细介绍如何在Spring Boot项目中整合Redis,提升系统响应速度和用户体验。
82 0
|
6月前
|
存储 缓存 NoSQL
Redis 缓存常见问题
Redis 缓存常见问题
66 3
|
5月前
|
消息中间件 缓存 监控
go-zero微服务实战系列(六、缓存一致性保证)
go-zero微服务实战系列(六、缓存一致性保证)
|
8月前
|
缓存 Java 数据库连接
MyBatis三级缓存实战:高级缓存策略的实现与应用
MyBatis三级缓存实战:高级缓存策略的实现与应用
176 0
MyBatis三级缓存实战:高级缓存策略的实现与应用
|
8月前
|
缓存 监控 负载均衡
【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(数据缓存不一致分析)
【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(数据缓存不一致分析)
141 2