数据结构与算法(二叉搜索树)~ 介绍二叉搜索树以及力扣上几道二叉搜索树题目的方法和套路

简介: 数据结构与算法(二叉搜索树)~ 介绍二叉搜索树以及力扣上几道二叉搜索树题目的方法和套路

数据结构与算法(二叉搜索树)~ 介绍二叉搜索树以及力扣上几道二叉搜索树题目的方法和套路



1,二叉树的数据结构:

请参考文章:《数据结构与算法(二叉树)~ 介绍二叉树以及力扣上几道二叉树题目的方法和套路~ 第一部分


❀ 二叉搜索树的特点:

● 整个二叉搜索树非常有特点,根大于左子树, 小于右子树

● 二叉搜索数的中序遍历是有序的~升序的


2,二叉树的力扣算法题:


37.png


✿ 总结一些小套路吧 (没有通用的套路,就讲一下方法哈):

(1)108_将有序数组转换为二叉搜索树 的方法 和 套路:

方法一:利用二叉搜索树特点:根大于左,小于右【将数组不断地按中间点划分成左右子树】


(2)173_二叉搜索树迭代器 的方法 和 套路:

方法一:迭代器(容器,提前存储了按照一定规则摆放的数据~ 中序遍历(递归)),然后定义一个全局索引变量来辅助是否有next和进入next

方法二:迭代器(容器,提前存储了按照一定规则摆放的数据~ 中序遍历(迭代)),然后定义一个全局索引变量来辅助是否有next和进入next~因为题意要最小的,所以next方法,next到最后一层后【左为null】,该值【根】便是所求,然后切换到右边


(3)230_二叉搜索树中第K小的元素 的方法 和 套路:

方法一:中序遍历【递归法~辅助变量,递归到第k次 便是所求】

方法二:中序遍历【迭代法~辅助变量,pop掉k个数,便是所求】


(4)450_删除二叉搜索树中的节点 的方法 和 套路:

方法一:

       //删除值大于 根值,则只能在左子树删除目标,删除值小于根值,只能子啊右子树删除目标。

      //当删除的目标就是根值时,考虑:① 根是叶子 【根置空】 ② 有右子树 【根用后驱结点值覆盖,然后对右子树的重复结点进行删除】

      ③ 没有右子树【只能到左子树找了,根用前驱结点值覆盖,然后对左子树的重复结点进行删除】


(5)530_二叉搜索树的最小绝对差 的方法 和 套路:

      跟 783_二叉搜索树节点最小距离(一模一样。)

方法一:

       //中序遍历 (二叉搜索树的中序遍历是递增的,最小绝对值,只需要用前一个值-后二个值得出)

       //从第二个结点开始,每次进入一个新的结点,都要不断的更新最小距离


(6)700_二叉搜索树中的搜索 的方法 和 套路:

方法一:递归实现:① 若是值 = 根值,直接返回根结点;② 若是值 > 根值,只能到右子树中找,否则只能在左子树中找。

方法二:迭代实现:当一直不是 根值时,判断若 值小于根值,则只能在左区域找,否则只能在右区域找。


(7)701_二叉搜索树中的插入操作 的方法 和 套路:

方法一:递归实现

方法二:迭代实现:

       ①一开始:root == null; 创建一个结点(值即传入的val),然后返回给结点。

       ② 若值= 根值,重复了,直接return

       ③ 从根开始不断地遍历【需要记录一下父节点,以便跟插入结点构成联系】:(若值 > 父结点值【切换到右区域】),否者切换到左区域。直到找到一个 null的空地来建立结点:

       ④ 判断父结点:

       ● 没有左、右结点(判断一下父结点值和传入的值,从而得知插入是左还是右结点)

       ● 有左结点,直接插入在右结点位置

       ● 最后, 则插入在左结点位置


(8)783_二叉搜索树节点最小距离 的方法 和 套路:

方法一:(看 上面的 530_二叉搜索树的最小绝对差)


(9)938_二叉搜索树的范围和 的方法 和 套路:

方法一:遍历(随便一种遍历方式都可以,去比较遍历到的当前结点是否在【low high】范围内,是则直接添加即可了)

方法二:递归,利用二叉搜索树的特点(根大于左子树,根小于右子树):

当前结点(根值 小于 low)只能考虑右子树了;当前结点(根值 大于 low)只能考虑左子树了;当前结点(根值 处在【low high】 范围内)累加当前结点数据同时考虑左子树区域 + 右子树区域;

方法三:迭代实现 【队列:当前层的结点一个一个拿出来判断,若当前结点值范围大于high,考虑左子树区域,当前结点值小于low,考虑右子树区域,等于直接累加范围,然后左右子树区域都有可能】


(10)98_验证二叉搜索树 的方法 和 套路:

方法一:● 官网是通过重载接口方法使用递归法,(参数:根,最小,最大)~ 实现了局部到整体都满足: 二叉搜索树:根大于左子树,大于左边整棵树的最大值哦,同理,根小于右子树,小于右边整棵树的最小值。

方法二:递归或者迭代(中序遍历),只要出现当前结点小于前一个结点的值【false】


(11)99_恢复二叉搜索树 的方法 和 套路:

方法一:先中序遍历将有序的元素存放到容器 list 里,然后遍历容器找出两个有问题的结点。扫描 list的结果,找出可能存在错误交换的节点x和y【利用升序,

第一个错误结点:是出现递减的前一个【突然变大,导致后边那个结点受到影响,与之关系的递增被破坏】,

第二个错误结点,是出现递减的后一个【突然变小,导致前边一个结点受到影响,与之关系的递增被破坏】

方法二:迭代遍历(其实是第一种方法的简单优化一下而已,将第一种方法的中序递归改成中序迭代,将第一种存储数据元素于容器list,再找到问题结点优化成直接找,标记出两个问题结点,然后进行交换)

目录
相关文章
|
2月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
130 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
17天前
|
算法 计算机视觉
ORB算法在opencv中实现方法
处理网https://www.91chuli.com/
|
7月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
413 6
|
8月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
134 3
|
3月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
101 22
|
3月前
|
C语言 C++ 容器
【数据结构】二叉搜索树(二叉排序树)
本文介绍了二叉搜索树(Binary Search Tree, BST)的定义、实现及其性能分析。二叉搜索树是一种特殊的二叉树,其特点是左子树所有节点值小于根节点值,右子树所有节点值大于根节点值,且每个子树也满足此特性。文中详细讲解了BST的节点结构、插入、查找、删除等操作的实现,并通过C++代码展示了这些功能。此外,还讨论了BST的性能:在理想情况下,时间复杂度接近O(logN),但在最坏情况下可能退化为O(N)。为了提高效率,后续将学习自平衡二叉搜索树如AVL树和红黑树。掌握BST有助于理解STL中的set和map容器。感谢阅读,欢迎点赞支持。
229 9
|
5月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
920 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
7月前
|
存储 算法 安全
SnowflakeIdGenerator-雪花算法id生成方法
SnowflakeIdGenerator-雪花算法id生成方法
201 1
|
7月前
|
JSON 算法 数据挖掘
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
284 0
|
8月前
|
算法 索引
HashMap扩容时的rehash方法中(e.hash & oldCap) == 0算法推导
HashMap在扩容时,会创建一个新数组,并将旧数组中的数据迁移过去。通过(e.hash & oldCap)是否等于0,数据被巧妙地分为两类:一类保持原有索引位置,另一类索引位置增加旧数组长度。此过程确保了数据均匀分布,提高了查询效率。
133 2

热门文章

最新文章