MMEditing | 新视频超分算法冠军BasicVSR++来了

简介: 视频复原任务 (Video Restoration) 。它除了可以提高用户体验外, 还可以提高检测和分割等任务的准确度。其难点在于需要从高度相关但未对齐的视频帧中收集补充信息以进行恢复,在循环模型中跨帧传输长时信息和对齐特征的问题仍然是一个很艰巨的任务。

640.png

在日常生活中, 我们早已习惯用视频纪录生活点滴;视频影像在案件侦破等方面产生突出作用。

640.png

但是, 由于多样因素的影响, 导致视频质量下降。例如, 低质量的镜头只能输出低清视频, 手持相机会引致运动模糊, 传输中可能产生的视频压缩等等。那么, 是否有后处理的方法能够把低质量的视频变成高质量的视频呢?

640.png

这不得不提——视频复原任务 (Video Restoration) 。它除了可以提高用户体验外, 还可以提高检测和分割等任务的准确度。难点在于需要从高度相关但未对齐的视频帧中收集补充信息以进行恢复,在循环模型中跨帧传输长时信息和对齐特征的问题仍然是一个很艰巨的任务。


我们在 CVPR 2021 提出的 BasicVSR 有效提高了识别精度,但仍存在难以恢复有遮挡的复杂区域细节问题。因此,我们提出了 BasicVSR++,并在 NTIRE 2021 视频超分和压缩视频增强两个任务中收获了三个冠军以及一个亚军

640.png

我们这次的工作, 是针对 BasicVSR 和现有方法的不足提出改进, 从而达到更好的效果。我们提出了二阶网格传播(second-order grid propagation)光流引导可变形对齐(flow-guided deformable alignment), 在大约相同参数量下大幅度超过现有方法。

640.png

本文将详细解读BasicVSR++的部分, 对BasicVSR 有兴趣的同学可以看看以前的文章


本文内容

1. BasicVSR++ 方法

2. 实验结果与总结

3. 使用MMEditing 开发

1. BasicVSR++ 方法


BasicVSR++ 的整体思路跟 BasicVSR 类似, 都是利用了双向传播和特征对齐, 但它们在细节上截然不同。我们接下来会重点介绍两个最重要的部分:

1) Second-Order Grid Propagation

2) Flow-Guided Deformable Alignment

640.png改进 1

Second-Order Grid Propagation

二阶网格传播解决了 BasicVSR 中的两个局限性:


1)利用如上图所示的网格传播方式进行更有效的双向信息聚合;

2)放松了在 BasicVSR 中一阶马尔可夫性质的假设,并将二阶连接整合到网络中,以便可以从不同的时空位置聚合信息。以上两方面的修改都改善了网络中的信息聚合能力,并提高了网络对遮挡区域和精细区域的鲁棒性。


为了计算特征,我们首先使用我们提出的的光流引导可变形对齐进行特征对齐:

640.png

然后把这些特征连接起来并输进残差模块中:

640.png

改进 2

Flow-Guided Deformable Alignment

由于在可变形卷积(DCN)中引入了多样的偏移量,可变形对齐跟光流对齐相比有着显著改善。然而,可变形对齐模块可能很难训练。训练的不稳定性通常会导致偏移量溢出(overflow),从而使最终性能下降。


为了利用DCN偏移量的多样性且保证其训练的稳定性,我们提出了光流引导的可变形模块。这是由可变形对准和基于流的对准之间的紧密关系所激发的。


我们先讨论一阶设定,结构如下图所示:

640.png

给定从 LR 图像计算出的特征,为先前时间步计算出的特征以及到前一帧的光流,我们首先使用光流大致对齐特征

640.png

然后将预对齐的功能用于计算DCN offsets和modulation masks。这里值得留意的是, 我们不直接计算offsets, 而是计算光流的残差

640.png

然后把 DCN 应用于未对齐的特征:

640.png以上公式仅设计用于对齐单个特征,因此不适用于我们的二阶传播。适应二阶设置的最直观方法是将上述过程分别应用于两个特征。但是,这需要加倍的计算,从而导致效率降低。此外,单独的对齐方式可能会忽略来自特征的补充信息。因此,我们需要允许同时对齐两个特征。更具体地说,我们将扭曲的特征和光流连接起来来同时计算一阶和二阶的偏移量:

640.png

然后同样地把DCN应用于未对齐的特征:

640.png

与直接计算 DCN offsets 的现有方法不同,我们提出的光流引导可变形对齐采用光流作为初始偏移量。


这个设计有两个好处。首先,由于 CNN 只具有局部感受野,因此可以通过使用光流对特征进行预对齐来辅助偏移量的学习。其次,通过仅学习残差,网络仅需要学习与光流的微小偏差,从而减少了之前可变形对齐模块的负担。此外,DCN 中的 modulation mask 可以用作一个注意机制以自适应地调节不同像素的权重,从而提供额外的灵活性


2. 实验结果

640.png

上图的定量实验可以证实 BasicVSR++ 的有效性。跟 sliding-window 方法相比, BasicVSR++ 能在更少参数量下达到更优秀的效果


例如, BasicVSR++ 只需要EDVR 35%的参数量便能大幅度超越 EDVR。另外, 在大致相同的参数量下,BasicVSR++ 大幅超越 BasicVSR 和 IconVSR。这些都能证明 BasicVSR++ 的优越性


从下图例子我们可以看出, 通过我们提出的改进模块, BasicVSR++ 能更有效的把视频的信息利用起来, 相对之前的方法,可以恢复出更多的纹理细节。

640.png

别看它的名字有 VSR , 我们的模型是可以拓展到不同的视频复原任务当中。今年, 我们就在 NTIRE 2021 中视频超分和压缩视频增强比赛中收获了三个冠军和一个亚军。大家也可以尝试一下应用到其他任务中, 说不定也能带来提升。

640.png

总结


1. Second-order grid propagation 改进了网络的信息聚合能力;

2. Flow-guided deformable alignment 提升对齐表现, 并解决现有方法中 DCN 不稳定的问题;

3. 可以拓展到不同任务当中, 在 NTIRE 2021 收获三冠一亚。


3. 使用MMEditing 开发


重点来了, 那究竟哪里可以找到 BasicVSR++ 呢?


那当然就是 MMEditing 了。在 MMEditing 里面, 我们已经为你提供了 paper 和比赛的预训练模型, 让你可以快速上手。


除了 BasicVSR++, BasicVSR 在 NTIRE 2021 中也受到不少关注, 在比赛中不同队伍中都可以找到它的踪影。作为先驱, 我们当然也提供了 BasicVSR 的代码和模型让大家“享用”。偷偷告诉大家,这次的冠军团队就是基于 MMEditing 开发了现有的 BasicVSR++


所以,还在等什么?

现在赶紧把实验跑起来的话,

说不定下一个冠军就是你哦!



640.jpg

文章来源:公众号【OpenMMLab】

2021-08-13 19:03

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
24 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
7月前
|
存储 算法 Java
面试高频算法题汇总「图文解析 + 教学视频 + 范例代码」之 二分 + 哈希表 + 堆 + 优先队列 合集
面试高频算法题汇总「图文解析 + 教学视频 + 范例代码」之 二分 + 哈希表 + 堆 + 优先队列 合集
|
8月前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
8月前
|
算法
视频讲解|基于多目标粒子群算法的配电网储能选址定容
视频讲解|基于多目标粒子群算法的配电网储能选址定容
|
8月前
|
机器学习/深度学习 算法 数据挖掘
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(下)
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(下)
|
8月前
|
机器学习/深度学习 算法 搜索推荐
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(上)
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例
|
8月前
|
机器学习/深度学习 存储 编解码
利用深度学习优化视频压缩算法
【4月更文挑战第28天】随着数字媒体时代的到来,视频数据量急剧增加,有效的视频压缩技术变得尤为重要。本文探讨了一种基于深度学习的视频压缩框架,旨在提高压缩效率同时保持较高的视频质量。通过使用卷积神经网络(CNN)对视频帧进行特征提取,并结合先进的编码技术,本研究提出了一种新的率失真优化算法。实验结果表明,该算法在多个标准测试序列上相比传统方法能显著降低比特率,同时维持了良好的视觉质量。
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
140 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章