图解算法 | LeetCode第 70 题爬楼梯问题

简介: 图解算法 | LeetCode第 70 题爬楼梯问题


网络异常,图片无法展示
|

最近开始努力研究算法,遇到这个很有意思的题目,因为从中复习到斐波那契数列,又通过某篇资料,查到中科院官网,看了很多科普文章。深挖下去能看到很多东西。

本着热爱分享的初衷,整理本文与大家分享,题目本身没啥难度,欢迎一起交流,算法大佬求不喷,多谢。

进入主题。


本题为 LeetCode第70题爬楼梯,题目如下:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

大家可以先想想

网络异常,图片无法展示
|

流程分析

本题中,可以每次可以走 1 级,也可以一次走 2 级,因此我们会有 3 种走法:

  • 全程任意走,如全部 1 级走;
  • 前面任意走,最后一步只走 1 级;
  • 前面任意走,最后一步只走 2 级;

我画了几张图方便大家理解,如下:

网络异常,图片无法展示
|

第一种走法就不做详细介绍。

第二种走法,倒数第二步的走法如下,有 1 步和 2 步两种方式:

网络异常,图片无法展示
|

第三种走法,倒数第二步的走法如下,也有 1 步和 2 步两种方式:

网络异常,图片无法展示
|

上面这个过程描述的是,从最后一层开始往下的每一层的走法。

在最后一步时,有 1 步和 2 步两种方式,可以理解为只能 1 步或者 2 步到达最后一层。

  • 当最后一步为 1 步时,即从 n-1 层开始;
  • 当最后一步为 2 步时,即从 n-2 层开始;

再理解一下这个过程,就是第 n 层的走法数量是第 n-1 层和第 n-2 层走法数量之和。

如果还不太理解,可以再看看前面的图。

归纳法分析

当然,遇事不决,归纳法走起,我们可以列举几种情况进行分析:

台阶层数 走法数量 走法
1 1 1
2 2 11、2
3 3 111、12、21
4 5 1111、112、121、211、22
5 8 11111、1112、1121、1211、2111、221、212、122
... ... ...

可以发现有个简单的规律,当台阶层数为 n 层,它的走法数量就有 n-1 层的走法数量加上 n-2 层的走法数量。

记做:f(n)=f(n-1)+f(n-2)

第 1 层固定 1 种走法; 第 2 层固定 2 种走法; ... 第 5 层走法的数量等于第 4 层加上第 5 层走法数量。

理解清楚整个流程规律以后,我们就可以编码就简单多了:

解法1:循环累加计算

通过简单的循环累加就能得到结果:

const climbStairs = (n = 1) => {
    if(n <= 2) return n;
    let res = 0, n1 = 1, n2 = 2; // n1 表示前 2 项,n2 表示前 1 项
    for(let i = 3; i<= n; i++){  // 前两项值固定,因此从第 3 项开始循环
        res = n1 + n2;
        n1 = n2;
        n2 = res;
    }
    return res;
}

测试下第 6 层的走法数量:

climbStairs(6); // 13

解法2:递归计算

按照 f(n)=f(n-1)+f(n-2),这个方法更加简单:

const climbStairs = (n = 1) => {
    if(n <= 2) return n;
    return climbStairs(n-1) + climbStairs(n-2);
}

测试下第 6 层的走法数量:

climbStairs(6); // 13

这个方法比较简洁易懂,但递归比较费时,容易出现 LeetCode 超出时间限制的提示。

解法3:利用数组特性

利用 f(n)=f(n-1)+f(n-2) 这个规律,先预设好前 2 项,再开始循环,最后返回数组最后一项即可:

const climbStairs = n => {
    let result = [1,2];
    for (let i = 2; i < n; i++) {
        result.push(result[i-1] + result[i-2]);
    }
    return result[n-1];
};

解法4:利用 JavaScript ES6 新特性

利用数组结构赋值操作: [a, b] = [c, d]

const climbStairs = n => {
    let a = b = 1;
    for (let i = 0; i < n; i++) {
        [a, b] = [b, a + b];
    }
    return a;
};

当然,大家还有其他解法,欢迎一起讨论~

拓展知识:每次可以走 1 步、2 步、3 步

这里多增加了一次可以走 3 步,这时候最后一步会有以下情况:

  • 当最后一步为 1 步时,即从 n-1 层开始;
  • 当最后一步为 2 步时,即从 n-2 层开始;
  • 当最后一步为 3 步时,即从 n-3 层开始;

改造一下前面解法,还是一样:

const climbStairs = (n = 1) => {
    if(n <= 2) return n;
    if(n == 3) return 4;
    return climbStairs(n-1) + climbStairs(n-2) + climbStairs(n-3);
}

测试下第 6 层的走法数量:

climbStairs(6); // 24

拓展知识:斐波那契数列

这一题主要考察的内容类似斐波那契数列(Fibonacci sequence)的计算,如果你还不清楚什么是斐波那契数列,这边先简单介绍一下,另外推荐李永乐老师讲解的斐波那契的课

最早是有由数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入的,数列大致如:0、1、1、2、3、5、8、13、21、34、....。 认真观察,我们可以发现一个规律:从第 3 项开始,每一项的值都等于前两项之和

在自然界中,存在着许许多多的斐波那契数列的排列方式,比如一棵普通的树,它的树枝生长情况就像下面这样:

网络异常,图片无法展示
|

(图片来源网络)

可以看到每一层枝干的数量为 1、2、3、5、8、...排列下去。当然还有很多其他的:

网络异常,图片无法展示
|

(自然界中各种各样的裴波那契螺旋,图片来源于网络)

根据斐波那契数列的规律,得到这样的公式 f(n)=f(n-1)+f(n-2) 。跟我们前面列的差不多。

总结

这道题本身难度不大,但是如果没有理清流程和规律,很容易掉坑,写多余的代码。本文只列举四个简单实现方法,如果大家有其他实现方式,欢迎一起讨论~哈哈。


目录
相关文章
|
2月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
46 0
|
1月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
35 2
|
4月前
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
82 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
|
4月前
|
算法 Java
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
57 6
|
4月前
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
79 2
|
4月前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
54 1
|
4月前
|
存储 算法 Java
LeetCode经典算法题:预测赢家+香槟塔java解法
LeetCode经典算法题:预测赢家+香槟塔java解法
68 1
|
4月前
|
存储 算法 Java
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
84 0
|
4月前
|
算法 Java
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
45 0