触宝科技基于Apache Hudi的流批一体架构实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 当前公司的大数据实时链路如下图,数据源是MySQL数据库,然后通过Binlog Query的方式消费或者直接客户端采集到Kafka,最终通过基于Spark/Flink实现的批流一体计算引擎处理,最后输出到下游对应的存储。

1. 前言


当前公司的大数据实时链路如下图,数据源是MySQL数据库,然后通过Binlog Query的方式消费或者直接客户端采集到Kafka,最终通过基于Spark/Flink实现的批流一体计算引擎处理,最后输出到下游对应的存储。

25.png


2. 模型特征架构的演进


2.1 第一代架构

广告业务发展初期,为了提升策略迭代效率,整理出一套通用的特征生产框架,该框架由三部分组成:特征统计、特征推送和特征获取模型训练。如下图所示:

26.png

  • 客户端以及服务端数据先通过统一服务Sink到HDFS上
  • 基于基HDFS数据,统计特定维度的总量、分布等统计类特征并推送到Codis中
  • 从Codis中获取特征小时维度模型增量Training,读取HDFS文件进行天级别增量Training

该方案能够满足算法的迭代,但是有以下几个问题

  • 由于Server端直接Put本地文件到HDFS上无法做到根据事件时间精准分区,导致数据源不同存在口径问题
  • 不可控的小文件、空文件问题
  • 数据格式单一,只支持json格式
  • 用户使用成本较高,特征抽取需要不断的Coding
  • 整个架构扩展性较差

为解决上述问题,我们对第一版架构进行了演进和改善,构建了第二版批流一体架构。


2.2 第二代架构


2.2.1 批流一体平台的构建

首先将数据链路改造为实时架构,将Spark Structured Streaming(下文统一简称SS)与Flink SQL语法统一,同时实现与Flink SQL语法大体上一致的批流一体架构,并且做了一些功能上的增强与优化。

27.png

为什么有了Flink还需要支持SS呢?主要有以下几点原因

  • Spark生态相对更完善,当然现在Flink也做的非常好了
  • 用户使用习惯问题,有些用户对从Spark迁移到Flink没有多大诉求
  • SS Micro Batch引擎的抽象做批流统一更加丝滑
  • 相比Flink纯内存的计算模型,在延迟不敏感的场景Spark更友好

这里举一个例子,比如批流一体引擎SS与Flink分别创建Kafka table并写入到ClickHouse,语法分别如下

Spark Structured Streaming语法如下

--Spark Structured Streaming
CREATE STREAM spark (
    ad_id STRING,
    ts STRING,
    event_ts as to_timestamp(ts)
) WITH (
'connector' = 'kafka',
'topic' = 'xx',
'properties.bootstrap.servers'='xx',
'properties.group.id'='xx',
'startingOffsets'='earliest',
'eventTimestampField' = 'event_ts',
'watermark' = '60 seconds',
'format'='json'
);
create SINK ck(
    ad_id STRING,
    ts STRING,
    event_ts timestamp
) WITH(
 'connector'='jdbc',
 'url'='jdbc:clickhouse://host:port/db',
 'table-name'='table',
 'username'='user',
 'password'='pass',
 'sink.buffer-flush.max-rows'='10',
 'sink.buffer-flush.interval' = '5s',
 'sink.parallelism' = '3'
 'checkpointLocation'= 'checkpoint_path',
);
insert into ck select * from spark ;

Flink SQL语法如下28.png

CREATE TABLE flink (
     ad_id STRING,
     ts STRING,
    event_ts as to_timestamp(ts)
  )
WITH (
'connector' = 'kafka',
'topic' = 'xx',
'properties.bootstrap.servers'='xx',
'properties.group.id'='xx',
'scan.topic-partition-discovery.interval'='300s',
'format' = 'json'
);
CREATE TABLE ck (
    ad_id VARCHAR,
    ts VARCHAR,
    event_ts timestamp(3)
    PRIMARY KEY (ad_id) NOT ENFORCED
) WITH (
'connector'='jdbc',
 'url'='jdbc:clickhouse://host:port/db',
'table-name'='table',
'username'='user',
'password'='pass',
'sink.buffer-flush.max-rows'='10',
'sink.buffer-flush.interval' = '5s',
'sink.parallelism' = '3'
);
insert into ck select * from flink ;


2.2.2 模型特征处理新架构

新的模型特征处理采用批流一体的架构,上游对接数据源还是Kafka,模型主要有两个诉求

  • **支持增量读取方式减少模型更新的实效性 **
  • 利用CDC来实现特征的回补

整个流程如下图



2.2.3 Hudi、Delta还是Iceberg

3个项目都是目前活跃的开源数据湖方案,feature to feature的展开详细说篇幅太长,大致列举一下各自的优缺点。

29.png

其实通过对比可以发现各有优缺点,但往往会因为诉求不同,在实际落地生产时3种选型会存在同时多个共存的情况,为什么我们在模型特征的场景最终选择了Hudi呢?主要有以下几点

  • 国内Hudi社区非常活跃,问题可以很快得到解决
  • Hudi对Spark2的支持更加友好,公司算法还是Spark2为主
  • 算法希望有增量查询的能力,而增量查询能力是Hudi原生主打的能力,与我们的场景非常匹配
  • Hudi非常适合CDC场景,对CDC场景支持非常完善


2.2.4 方案上线

我们计划用Spark跟Flink双跑,通过数据质量以及资源成本来选择合适的计算引擎。选择的一个case是广告曝光ed流跟用户点击Click流Join之后落地到Hudi,然后算法增量查询抽取特征更新模型。


2.2.4.1 Flink方案

最初我们用的是Flink 1.12.2 + Hudi 0.8.0,但是实际上发现任务跑起来并不顺利,使用master最新代码0.9.0-SNAPSHOT之后任务可以按照预期运行,运行的Flink SQL如下

CREATE TABLE ed (
    `value` VARCHAR,
    ts as get_json_object(`value`,'$.ts'),
    event_ts as to_timestamp(ts),
    WATERMARK FOR event_ts AS event_ts - interval '1' MINUTE,
    proctime AS PROCTIME()
)WITH (
'connector' = 'kafka',
'topic' = 'ed',
'scan.startup.mode' = 'group-offsets',
'properties.bootstrap.servers'='xx',
'properties.group.id'='xx',
'scan.topic-partition-discovery.interval'='100s',
'scan.startup.mode'='group-offsets',
'format'='schemaless'
);
CREATE TABLE click (
    req_id VARCHAR,
    ad_id VARCHAR,
    ts VARCHAR,
    event_ts as to_timestamp(ts),
    WATERMARK FOR event_ts AS event_ts - interval '1' MINUTE,
    proctime AS PROCTIME()
)WITH (
'connector' = 'kafka',
'topic' = 'click',
'properties.bootstrap.servers'='xx',
'scan.startup.mode' = 'group-offsets',
'properties.bootstrap.servers'='xx',
'properties.group.id'='xx',
'scan.topic-partition-discovery.interval'='100s',
'format'='json'
);
CREATE TABLE hudi(
uuid VARCHAR,
ts  VARCHAR,
json_info  VARCHAR,  
is_click INT,
dt VARCHAR,
`hour`  VARCHAR,
PRIMARY KEY (uuid) NOT ENFORCED
)
PARTITIONED BY (dt,`hour`)
WITH (
  'connector' = 'hudi',
  'path' = 'hdfs:///xx',
  'write.tasks' = '10',  
  'write.precombine.field'='ts',
  'compaction.tasks' = '1',
  'table.type' = 'COPY_ON_WRITE'  
);
insert into hudi 
  SELECT concat(req_id, ad_id) uuid,
  date_format(event_ts,'yyyyMMdd') AS  dt,
  date_format(event_ts,'HH') `hour`,
  concat(ts, '.', cast(is_click AS STRING)) AS ts,
  json_info,is_click
FROM (
SELECT
  t1.req_id,t1.ad_id,t1.ts,t1.json_info,
  if(t2.req_id <> t1.req_id,0,1) as is_click,
  ROW_NUMBER() OVER (PARTITION BY t1.req_id,t1.ad_id,t1.ts ORDER BY if(t2.req_id <> t1.req_id,0,1) DESC) as row_num
  FROM
  (select  ts,event_ts,map_info['req_id'] req_id,map_info['ad_id'] ad_id, `value` as json_info from ed,LATERAL TABLE(json_tuple(`value`,'req_id','ad_id')) as T(map_info)) t1  
  LEFT JOIN
  click t2 
  ON t1.req_id=t1.req_id and t1.ad_id=t2.ad_id 
  and t2.event_ts between t1.event_ts - INTERVAL '10' MINUTE and t1.event_ts + INTERVAL '4' MINUTE
  ) a where a.row_num=1;

标注:上述SQL中有几处与官方SQL不一致,主要是实现了统一规范Schema为一列的Schemaless的Format、与Spark/Hive语义基本一致的get_json_object以及json_tuple UDF,这些都是在批流一体引擎做的功能增强的一小部分。

但是在运行一周后,面临着业务上线Delay的压力以及暴露出来的两个问题让我们不得不先暂时放弃Flink方案

  • 任务反压的问题(无论如何去调整资源似乎都会出现严重的反压,虽然最终我们通过在写入Hudi之前增加一个upsert-kafka的中间流程解决了,但链路过长这并不是我们预期内的)
  • 还有一点是任务存在丢数据的风险,对比Spark方案发现Flink会有丢数据的风险

标注:这个case并非Flink集成Hudi不够,国内已经有很多使用Flink引擎写入Hudi的实践,但在我们场景下因为为了确保上线时间,没有太多时间细致排查问题。实际上我们这边Kafka -> Hive链路有95%的任务都使用Flink替代了Spark Structured Streaming(SS)


2.2.4.2 Spark方案

由于没有在Hudi官方网站上找到SS集成的说明,一开始笔者快速实现了SS与Hudi的集成,但是在通读Hudi代码之后发现其实社区早已有了SS的完整实现,另外咨询社区同学leesf之后给出的反馈是当前SS的实现也很稳定。稍作适配SS版本的任务也在一天之内上线了,任务SQL如下

CREATE STREAM ed (
    value STRING,
    ts as get_json_object(value,'$.ts'),
    event_ts as to_timestamp(get_json_object(value,'$.ts'))
) WITH (
'connector' = 'kafka',
'topic' = 'ed',
'properties.bootstrap.servers'='xx',
'properties.group.id'='xx',
'startingOffsets'='earliest',
'minPartitions' = '60',
'eventTimestampField' = 'event_ts',
'maxOffsetsPerTrigger' = '250000',   
'watermark' = '60 seconds',
'format'='schemaless'
);
CREATE STREAM  click (
    req_id STRING,
    ad_id STRING,
    ts STRING,
    event_ts as to_timestamp(ts)
) WITH (
'connector' = 'kafka',
'topic' = 'click',
'properties.bootstrap.servers'='xxxx'properties.group.id'='dw_ad_algo_naga_dsp_ed_click_rt',
'startingOffsets'='earliest',
'maxOffsetsPerTrigger' = '250000',
'eventTimestampField' = 'event_ts',
'minPartitions' = '60',
'watermark' = '60 seconds',
'format'='json'
);
--可以动态注册python、java、scala udf
create python function py_f with (
 'code' = '
def apply(self,m):
  return 'python_{}'.format(m)
',
'methodName'= 'apply',
'dataType' = 'string'
);
create SINK hudi(
uuid STRING,
dt STRING,
hour  STRING,
ts  STRING,
json_info  STRING,  
is_click INT
) WITH (
    'connector'='hudi',
    'hoodie.table.name' = 'ed_click',
    'path' ='hdfs:///xx',
    'hoodie.datasource.write.recordkey.field' = 'uuid',
    'hoodie.datasource.write.precombine.field' = 'ts',
    'hoodie.datasource.write.operation' = 'upsert',
    'hoodie.datasource.write.partitionpath.field' = 'dt,hour',
    'hoodie.datasource.write.keygenerator.class'= 'org.apache.hudi.keygen.ComplexKeyGenerator',
    'hoodie.datasource.write.table.type' = 'COPY_ON_WRITE',
    'hoodie.datasource.write.hive_style_partitioning'='true',
    'hoodie.datasource.write.streaming.ignore.failed.batch'='false',
    'hoodie.keep.min.commits'='120',
    'hoodie.keep.max.commits'='180',
    'hoodie.cleaner.commits.retained'='100',
    --'hoodie.datasource.write.insert.drop.duplicates' = 'true',
    --'hoodie.fail.on.timeline.archiving'='false',
    --'hoodie.datasource.hive_sync.table'='true',
   -- 'hoodie.datasource.hive_sync.database'='ods_test',
   -- 'hoodie.datasource.hive_sync.table'='ods_test_hudi_test2',
   -- 'hoodie.datasource.hive_sync.use_jdbc'='false',
   -- 'hoodie.datasource.meta.sync.enable' ='true',
   -- 'hoodie.datasource.hive_sync.partition_fields'='dt,hour',
   -- 'hoodie.datasource.hive_sync.partition_extractor_class'='org.apache.hudi.hive.MultiPartKeysValueExtractor',
    'trigger'='30',
    'checkpointLocation'= 'checkpoint_path'
);
INSERT INTO
   hudi
SELECT
  concat(req_id, ad_id) uuid,
  date_format(ts,'yyyyMMdd') dt,
  date_format(ts,'HH') hour,
  concat(ts, '.', cast(is_click AS STRING)) AS ts,
  json_info,
  is_click
FROM
  (
    SELECT
      t1.req_id,
      t1.ad_id,
      t1.ts,
      t1.json_info,
      IF(t2.req_id is null, 0, 1) AS is_click
    FROM
      (select  ts,event_ts,req_id,ad_id,value as json_info from ed
      lateral view json_tuple(value,'req_id','ad_id') tt as req_id,ad_id) t1
      LEFT JOIN click t2 ON t1.req_id = t2.req_id
      AND t1.ad_id = t2.ad_id
      AND t2.event_ts BETWEEN t1.event_ts - INTERVAL 10 MINUTE
      AND t1.event_ts + INTERVAL 4 MINUTE
  ) tmp;

标注:Spark批流一体引擎在流语法上尽量与Flink对齐,同时我们实现了python/java/scala多语言udf的动态注册以方便用户使用


3. 新方案收益


通过链路架构升级,基于Flink/Spark + Hudi的新的流批一体架构带来了如下收益

  • 构建在Hudi上的批流统一架构纯SQL化极大的加速了用户的开发效率
  • Hudi在COW以及MOR不同场景的优化让用户有了更多的读取方式选择,增量查询让算法可以实现分钟级别的模型更新,这也是用户的强烈诉求
  • 利用SS以及Flink的事件时间语义抹平了口径上的Gap
  • Hudi自动Compact机制+小文件智能处理,对比第一版实现甚至对比需要手动Compact无疑极大的减轻了工程负担


4. 踩过的坑


  • 写Hudi重试失败导致数据丢失风险。解决办法:hoodie.datasource.write.streaming.ignore.failed.batch设置为false,不然Task会间隔hoodie.datasource.write.streaming.retry.interval.ms(默认2000)重试hoodie.datasource.write.streaming.retry.count(默认3)
  • 增量查询Range太大,导致算法任务重试1小时之前的数据获取到空数据。解决办法:调大保留版本数对应参数为hoodie.keep.min.commitshoodie.keep.max.commits调大cleanup retention版本数对应参数为hoodie.cleaner.commits.retained
  • Upsert模式下数据丢失问题。解决办法:hoodie.datasource.write.insert.drop.duplicates设置为false,这个参数会将已经存在index的record丢弃,如果存在update的record会被丢弃
  • Spark读取hudi可能会存在path not exists的问题,这个是由于cleanup导致的,解决办法:调整文件版本并进行重试读取


5. 未来规划


基于Hudi线上运行的稳定性,我们也打算基于Hudi进一步探索流批一体的更多应用场景,包括

  • 使用Hudi替代Kafka作为CDC实时数仓Pipeline载体
  • 深度结合Hive以及Presto,将Hive表迁移为基于Hudi的架构,以解决分区小文件以及产出失效的问题
  • 探索Flink+Hudi作为MySQL Binlog归档方案
  • 探索Z-Order加速Spark在多维查询上的性能表现
目录
相关文章
|
1天前
|
监控 负载均衡 数据安全/隐私保护
探索微服务架构下的服务网格(Service Mesh)实践
【5月更文挑战第6天】 在现代软件工程的复杂多变的开发环境中,微服务架构已成为构建、部署和扩展应用的一种流行方式。随着微服务架构的普及,服务网格(Service Mesh)作为一种新兴技术范式,旨在提供一种透明且高效的方式来管理微服务间的通讯。本文将深入探讨服务网格的核心概念、它在微服务架构中的作用以及如何在实际项目中落地实施服务网格。通过剖析服务网格的关键组件及其与现有系统的协同工作方式,我们揭示了服务网格提高系统可观察性、安全性和可操作性的内在机制。此外,文章还将分享一些实践中的挑战和应对策略,为开发者和企业决策者提供实用的参考。
|
1天前
|
存储 监控 Apache
查询提速11倍、资源节省70%,阿里云数据库内核版 Apache Doris 在网易日志和时序场景的实践
网易的灵犀办公和云信利用 Apache Doris 改进了大规模日志和时序数据处理,取代了 Elasticsearch 和 InfluxDB。Doris 实现了更低的服务器资源消耗和更高的查询性能,相比 Elasticsearch,查询速度提升至少 11 倍,存储资源节省达 70%。Doris 的列式存储、高压缩比和倒排索引等功能,优化了日志和时序数据的存储与分析,降低了存储成本并提高了查询效率。在灵犀办公和云信的实际应用中,Doris 显示出显著的性能优势,成功应对了数据增长带来的挑战。
查询提速11倍、资源节省70%,阿里云数据库内核版 Apache Doris 在网易日志和时序场景的实践
|
2天前
|
API 持续交付 开发者
构建高效微服务架构:策略与实践
【5月更文挑战第6天】随着现代软件系统的复杂性增加,微服务架构逐渐成为企业开发的首选模式。本文深入分析了构建高效微服务架构的关键策略,并提供了一套实践指南,帮助开发者在保证系统可伸缩性、灵活性和稳定性的前提下,优化后端服务的性能和可维护性。通过具体案例分析,本文将展示如何利用容器化、服务网格、API网关等技术手段,实现微服务的高可用和敏捷部署。
|
2天前
|
存储 前端开发 Java
Android应用开发中的MVP架构模式实践
【5月更文挑战第5天】随着移动应用开发的复杂性增加,传统的MVC(Model-View-Controller)架构在应对大型项目时显得笨重且不灵活。本文将探讨一种更适应现代Android应用开发的架构模式——MVP(Model-View-Presenter),并展示如何在Android项目中实现该模式以提升代码的可维护性和可测试性。通过对比分析MVP与传统MVC的差异,以及提供一个实际案例,读者将能深入了解MVP的优势和实施步骤。
|
2天前
|
缓存 NoSQL Java
构建高性能微服务架构:Java后端的实践之路
【5月更文挑战第5天】在当今快速迭代和高并发需求的软件开发领域,微服务架构因其灵活性、可扩展性而受到青睐。本文将深入探讨如何在Java后端环境中构建一个高性能的微服务系统,涵盖关键的设计原则、常用的框架选择以及性能优化技巧。我们将重点讨论如何通过合理的服务划分、高效的数据存储策略、智能的缓存机制以及有效的负载均衡技术来提升整体系统的响应速度和处理能力。
|
3天前
|
监控 持续交付 数据库
构建高效可靠的微服务架构:策略与实践
【5月更文挑战第5天】 在当今快速发展的软件开发领域,微服务架构已成为构建可扩展、灵活且容错的系统的首选模式。本文将探讨如何通过一系列经过验证的策略和最佳实践来构建一个高效且可靠的微服务系统。我们将深入分析微服务设计的核心原则,包括服务的细粒度划分、通信机制、数据一致性以及容错处理,并讨论如何利用现代技术栈来实现这些目标。文章将提供一套综合指南,旨在帮助开发者和架构师在保证系统性能的同时,确保系统的稳健性。
22 4
|
3天前
|
消息中间件 Go API
Golang深入浅出之-Go语言中的微服务架构设计与实践
【5月更文挑战第4天】本文探讨了Go语言在微服务架构中的应用,强调了单一职责、标准化API、服务自治和容错设计等原则。同时,指出了过度拆分、服务通信复杂性、数据一致性和部署复杂性等常见问题,并提出了DDD拆分、使用成熟框架、事件驱动和配置管理与CI/CD的解决方案。文中还提供了使用Gin构建HTTP服务和gRPC进行服务间通信的示例。
19 0
|
3月前
|
消息中间件 Kafka Apache
Apache Flink 是一个开源的分布式流处理框架
Apache Flink 是一个开源的分布式流处理框架
594 5
|
2月前
|
消息中间件 API Apache
官宣|阿里巴巴捐赠的 Flink CDC 项目正式加入 Apache 基金会
本文整理自阿里云开源大数据平台徐榜江 (雪尽),关于阿里巴巴捐赠的 Flink CDC 项目正式加入 Apache 基金会。
1615 2
官宣|阿里巴巴捐赠的 Flink CDC 项目正式加入 Apache 基金会
|
2月前
|
SQL Java API
官宣|Apache Flink 1.19 发布公告
Apache Flink PMC(项目管理委员)很高兴地宣布发布 Apache Flink 1.19.0。
1622 2
官宣|Apache Flink 1.19 发布公告

推荐镜像

更多