提升50%!Presto如何提升Hudi表查询性能?

简介: 分享一篇关于使用Hudi Clustering来优化Presto查询性能的talk

分享一篇关于使用Hudi Clustering来优化Presto查询性能的talk

30.jpg

talk主要分为如下几个部分

  • 演讲者背景介绍
  • Apache Hudi介绍
  • 数据湖演进和用例说明
  • Hudi Clustering介绍
  • Clustering性能和使用
  • 未来工作

31.jpg

该talk的演讲者为Nishith Agarwal和Satish Kotha,其中Nishith Agarwal是Apache Hudi PMC成员,在Uber任职团队Leader,Satish Kotha是Apache Hudi Committer,也在Uber任职软件工程师。

32.jpg

什么是Apache Hudi?Hudi是一个数据湖平台,提供了一些核心功能,来构建和管理数据湖,其提供的核心能力是基于DFS摄取和管理超大规模数据集,包括:增量数据库摄取、日志去重、存储管理、事务写、更快的ETL数据管道、数据合规性约束/数据删除、唯一键约束、处理延迟到达数据等等。

33.jpg

现在Hudi在Uber内部的生产应用规模已经达到了一个新台阶,数据总规模超过了250PB8000+张表,每天摄取5000亿条数据。

34.jpg

基于Hudi的数据湖架构演进如下。通过批、流方式将数据以Hudi格式写入数据湖中,而Hudi提供的事务、主键索引以及二级索引等能力均可加速数据的写入,数据写入Hudi后,数据文件的组织会以列存(基础文件)和行存(增量日志文件)方式存储,同时借助Hudi提供的各种表服务,如

  • Cleaning:清理服务,用来清理过期版本的文件;
  • Clustering:数据聚簇,将文件按照某些列进行聚簇,以重新布局,达到优化查询性能的效果;
  • Replication:复制服务,将数据跨地域进行复制;
  • Archiving:归档服务,归档commit元数据,避免元数据不断膨胀;
  • Compaction:压缩服务,将基础文件和增量日志文件进行合并,生成新版本列存文件,提升查询性能;

而对于查询引擎而言,Hudi可以将其表信息注册至Metastore中,查询引擎如Presto即可与Metastore交互获取表的元信息并查询表数据。

35.jpg

由于Uber内部大规模使用了Presto查询引擎,下面重点介绍Hudi和PrestoDB的集成细节。

36.jpg

现阶段PrestoDB支持查询两种Hudi表类型:针对读友好的COPY_ON_WRITE类型(存列存格式)和写友好的MERGE_ON_READ类型(列存+行存格式);支持已经相对完备。

37.jpg

介绍完Hudi和PrestoDB集成现状后,来看看使用案例和场景,Hudi与Presto的集成是如何降低成本和提高查询性能的

38.jpg

大数据场景下,对于写入(摄取)和查询引擎的优化思路通常不同,可以从两个维度进行对比,如数据位置和文件大小,对于写入而言,数据位置一般决定于数据到达时间,文件大小则更倾向于小文件(小文件可减小写入延迟);而对于查询而言,数据位置会更倾向于查询的数据在同一位置,文件大小则更倾向于大文件,小文件带来额外的开销。

39.jpg

有没有一种方式可以兼顾写入和查询呢,答案是肯定的,引入Clustering,对于Clustering,说明如下。

  • Clustering是Hudi提供的一种改变数据布局的框架
  • 提供了可插拔的策略来重组数据;
  • 开源版本提供了一些开箱即用的策略;
  • Clustering还提供了非常灵活的配置
  • 可以单独挑出部分分区进行数据重组;
  • 不同分区可使用不同方式处理;
  • 支持不同粒度的数据重组:全局、本地、自定义方式;
  • Clustering提供了快照隔离和时间旅行
  • 与Hudi的Rollback和Restore兼容;
  • 更新Hudi元数据和索引;
  • Clustering还支持多版本并发控制
  • Clustering可与摄取并发执行;
  • Clustering和其他Hudi表服务如Compaction可并发执行;

40.jpg

下面来看一个使用Clustering来提高查询性能的案例,使用的的SQL如下select b,c from t where a < 10000 and b <= 50000;列举了三种情况。

  1. 未下推但未进行Clustering,扫描的文件数很多;
  2. 下推但未进行Clustering,扫描及处理的文件数也很多;
  3. 下推并且进行Clustering,扫描及处理的数据量变得较少;

41.jpg

接着看看未进行Clustering之前的查询计划,总共扫描输入了2900W+条数据,最后过滤输出了140W+条数据,过滤掉数据的比例达95.17%;

42.jpg

经过Clustering之后的执行计划,总共扫描输入了371W+条数据,最后过滤输出了140W+条数据;相比未进行Clustering,扫描的数据量从2900W+减少到了371W+;可见Clustering的效果提升非常显著。

43.jpg

对于Clustering带来的查询性能优化如下

  • 未进行Clustering,扫描输入数据量大小为2290MB,条数为2900W+,CPU耗时27.56S
  • 进行Clustering后,扫描输入数据量大小为182MB,条数为300W+,CPU耗时6.93S

扫描数据量减少了10倍,CPU消耗减少了4倍,查询延迟降低了50%+

44.jpg

基于Clustering可提供强大的的性能优化,在Uber内部也已经在生产上使用了Clustering,利用了Clustering可以和摄入并发执行的特性。生产中使用了两条Pipeline,一条摄入Pipeline,一条Clustering Pipeline,这样摄入Pipeline可以不断产生新的小文件,而通过异步的Clustering Pipeline将小文件合并,从而对查询端暴露大文件,避免查询端受写入端产生太多小文件问题影响。

45.jpg

关于通过Clustering加速Presto的查询性能上面已经讲述完了,当然对于Clustering还有后续的规划:落地更多的用例;将Clustering作为一个更轻量级的服务调用;分优先级及分层(如多个Job跨表重组数据布局);根据历史查询性能优化新的数据布局;在Presto中添加二级索引进一步减少查询时间;提升重写性能(如对于某些策略降低重写数据开销);

46.jpg

目录
相关文章
|
前端开发 数据库
node使用node-xlsx实现excel的下载与导入,保证你看的明明白白
node使用node-xlsx实现excel的下载与导入,保证你看的明明白白
【分享】Groovy时间戳转日期
在集成自动化中 通过Groovy处理时间戳,格式化日期输出。
1149 0
|
SQL 前端开发 流计算
flink写入数据到hudi的四种方式
本文描述flink写入数据到hudi的四种方式
|
关系型数据库 MySQL 分布式数据库
PolarDB 与传统数据库的性能对比分析
【8月更文第27天】随着云计算技术的发展,越来越多的企业开始将数据管理和存储迁移到云端。阿里云的 PolarDB 作为一款兼容 MySQL 和 PostgreSQL 的关系型数据库服务,提供了高性能、高可用和弹性伸缩的能力。本文将从不同角度对比 PolarDB 与本地部署的传统数据库(如 MySQL、PostgreSQL)在性能上的差异。
967 1
|
机器学习/深度学习 人工智能 算法框架/工具
使用Python实现深度学习模型:智能家电控制与优化
使用Python实现深度学习模型:智能家电控制与优化
521 22
使用Python实现深度学习模型:智能家电控制与优化
|
边缘计算 人工智能 监控
边缘计算与AI结合的场景案例研究
【8月更文第17天】随着物联网(IoT)设备数量的爆炸性增长,对实时数据处理的需求也随之增加。传统的云计算模型在处理这些数据时可能会遇到延迟问题,尤其是在需要即时响应的应用中。边缘计算作为一种新兴的技术趋势,旨在通过将计算资源更靠近数据源来解决这个问题。本文将探讨如何将人工智能(AI)技术与边缘计算结合,以实现高效的实时数据分析和决策制定。
1317 1
|
SQL 存储 测试技术
提升50%+!Presto如何提升Hudi表查询性能?
提升50%+!Presto如何提升Hudi表查询性能?
304 0
|
SQL 分布式计算 Hadoop
Hive on Tez 的安装配置
Hive on Tez 的安装配置
966 0
Hive on Tez 的安装配置
|
监控 数据可视化 数据挖掘
ERP系统中的数据分析与决策支持解析
【7月更文挑战第25天】 ERP系统中的数据分析与决策支持解析
1133 0
|
SQL Java Apache
超详细步骤!整合Apache Hudi + Flink + CDH
超详细步骤!整合Apache Hudi + Flink + CDH
822 0