Apache Hudi核心概念一网打尽

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 笔记

1. 场景


  • 近实时写入
  • 减少碎片化工具的使用
  • CDC 增量导入 RDBMS 数据
  • 限制小文件的大小和数量
  • 近实时分析
  • 相对于秒级存储 (Druid, OpenTSDB) ,节省资源
  • 提供分钟级别时效性,支撑更高效的查询
  • Hudi 作为 lib,非常轻量
  • 增量 pipeline
  • 区分 arrivetime 和 event time 处理延迟数据
  • 更短的调度 interval 减少端到端延迟 (小时 -> 分钟) => Incremental Processing
  • 增量导出
  • 替代部分 Kafka 的场景,数据导出到在线服务存储 e.g. ES


2. 概念/术语


2.1 Timeline

14.png

Timeline 是 HUDI 用来管理提交(commit)的抽象,每个 commit 都绑定一个固定时间戳,分散到时间线上。在 Timeline 上,每个 commit 被抽象为一个 HoodieInstant,一个 instant 记录了一次提交 (commit) 的行为、时间戳、和状态。

HUDI 的读写 API 通过 Timeline 的接口可以方便的在 commits 上进行条件筛选,对 history 和 on-going 的 commits 应用各种策略,快速筛选出需要操作的目标 commit。


2.2 Time

Arrival time: 数据到达 Hudi 的时间,commit time

Event time: record 中记录的时间

13.png

上图中采用时间(小时)作为分区字段,从 10:00 开始陆续产生各种 commits,10:20 来了一条 9:00 的数据,该数据仍然可以落到 9:00 对应的分区,通过 timeline 直接消费 10:00 之后的增量更新(只消费有新 commits 的 group),那么这条延迟的数据仍然可以被消费到。


2.3 文件管理

12.png


2.3.1 文件版本

一个新的 base commit time 对应一个新的 FileSlice,实际就是一个新的数据版本。HUDI 通过 TableFileSystemView 抽象来管理 table 对应的文件,比如找到所有最新版本 FileSlice 中的 base file (Copy On Write Snapshot 读)或者 base + log files(Merge On Read 读)。

通过 Timeline 和 TableFileSystemView 抽象,HUDI 实现了非常便捷和高效的表文件查找。


2.3.3 文件格式

Hoodie 的每个 FileSlice 中包含一个 base file (merge on read 模式可能没有)和多个 log file (copy on write 模式没有)。

每个文件的文件名都带有其归属的 FileID(即 FileGroup Identifier)和 base commit time(即 InstanceTime)。通过文件名的 group id 组织 FileGroup 的 logical 关系;通过文件名的 base commit time 组织 FileSlice 的逻辑关系。

HUDI 的 base file (parquet 文件) 在 footer 的 meta 去记录了 record key 组成的 BloomFilter,用于在 file based index 的实现中实现高效率的 key contains 检测。只有不在 BloomFilter 的 key 才需要扫描整个文件消灭假阳。

HUDI 的 log (avro 文件)是自己编码的,通过积攒数据 buffer 以 LogBlock 为单位写出,每个 LogBlock 包含 magic number、size、content、footer 等信息,用于数据读、校验和过滤。


2.4 Index

Hoodie key (record key + partition path) 和 file id (FileGroup) 之间的映射关系,数据第一次写入文件后保持不变,所以,一个 FileGroup 包含了一批 record 的所有版本记录。Index 用于区分消息是 INSERT 还是 UPDATE。


2.4.1 Index的创建过程


1. BloomFilter Index
  • 新增 records 找到映射关系:record key => target partition
  • 当前最新的数据 找到映射关系:partition => (fileID, minRecordKey, maxRecordKey) LIST (如果是 base files 可加速)
  • 新增 records 找到需要搜索的映射关系:fileID => HoodieKey(record key + partition path) LIST,key 是候选的 fileID
  • 通过 HoodieKeyLookupHandle 查找目标文件(通过 BloomFilter 加速)
2. Flink State-based Index

HUDI 在 0.8.0 版本中实现的 Flink witer,采用了 Flink 的 state 作为底层的 index 存储,每个 records 在写入之前都会先计算目标 bucket ID,不同于 BloomFilter Index,避免了每次重复的文件 index 查找。


2.5 Table 类型

11.png

2.5.1 Copy On Write

Copy On Write 类型表每次写入都会生成一个新的持有 base file(对应写入的 instant time ) 的 FileSlice。

用户在 snapshot 读取的时候会扫描所有最新的 FileSlice 下的 base file。

10.png

2.5.2 Merge On Read

Merge On Read 表的写入行为,依据 index 的不同会有细微的差别:

  • 对于 BloomFilter 这种无法对 log file 生成 index 的索引方案,对于 INSERT 消息仍然会写 base file (parquet format),只有 UPDATE 消息会 append log 文件(因为 base file 总已经记录了该 UPDATE 消息的 FileGroup ID)。
  • 对于可以对 log file 生成 index 的索引方案,例如 Flink writer 中基于 state 的索引,每次写入都是 log format,并且会不断追加和 roll over。

Merge On Read 表的读在 READ OPTIMIZED 模式下,只会读最近的经过 compaction 的 commit。

9.png


3. 数据写


3.1 写操作

  • UPSERT:默认行为,数据先通过 index 打标(INSERT/UPDATE),有一些启发式算法决定消息的组织以优化文件的大小 => CDC 导入
  • INSERT:跳过 index,写入效率更高 => Log Deduplication
  • BULK_INSERT:写排序,对大数据量的 Hudi 表初始化友好,对文件大小的限制 best effort(写 HFile)


3.1.1 写流程(UPSERT)


1. Copy On Write
  • 先对 records 按照 record key 去重
  • 首先对这批数据创建索引 (HoodieKey => HoodieRecordLocation);通过索引区分哪些 records 是 update,哪些 records 是 insert(key 第一次写入)
  • 对于 update 消息,会直接找到对应 key 所在的最新 FileSlice 的 base 文件,并做 merge 后写新的 base file (新的 FileSlice)
  • 对于 insert 消息,会扫描当前 partition 的所有 SmallFile(小于一定大小的 base file),然后 merge 写新的 FileSlice;如果没有 SmallFile,直接写新的 FileGroup + FileSlice

2. Merge On Read
  • 先对 records 按照 record key 去重(可选)
  • 首先对这批数据创建索引 (HoodieKey => HoodieRecordLocation);通过索引区分哪些 records 是 update,哪些 records 是 insert(key 第一次写入)
  • 如果是 insert 消息,如果 log file 不可建索引(默认),会尝试 merge 分区内最小的 base file (不包含 log file 的 FileSlice),生成新的 FileSlice;如果没有 base file 就新写一个 FileGroup + FileSlice + base file;如果 log file 可建索引,尝试 append 小的 log file,如果没有就新写一个 FileGroup + FileSlice + base file
  • 如果是 update 消息,写对应的 file group + file slice,直接 append 最新的 log file(如果碰巧是当前最小的小文件,会 merge base file,生成新的 file slice)log file 大小达到阈值会 roll over 一个新的


3.1.2 写流程(INSERT)


1. Copy On Write
  • 先对 records 按照 record key 去重(可选)
  • 不会创建 Index
  • 如果有小的 base file 文件,merge base file,生成新的 FileSlice + base file,否则直接写新的 FileSlice + base file

2. Merge On Read
  • 先对 records 按照 record key 去重(可选)
  • 不会创建 Index
  • 如果 log file 可索引,并且有小的 FileSlice,尝试追加或写最新的 log file;如果 log file 不可索引,写一个新的 FileSlice + base file


3.1.3 工具

  • DeltaStreamer
  • Datasource Writer
  • Flink SQL API


3.1.4 Key 生成策略

用来生成 HoodieKey(record key + partition path),目前支持以下策略:

  • 支持多个字段组合 record keys
  • 支持多个字段组合的 parition path (可定制时间格式,Hive style path name)
  • 非分区表


3.1.5 删除策略

  • 逻辑删:将 value 字段全部标记为 null
  • 物理删:
  • 通过 OPERATION_OPT_KEY 删除所有的输入记录
  • 配置 PAYLOAD_CLASS_OPT_KEY = org.apache.hudi.EmptyHoodieRecordPayload 删除所有的输入记录
  • 在输入记录添加字段:_hoodie_is_deleted


4. 数据读


4.1 Snapshot 读

读取所有 partiiton 下每个 FileGroup 最新的 FileSlice 中的文件,Copy On Write 表读 parquet 文件,Merge On Read 表读 parquet + log 文件


4.2 Incremantal 读

https://hudi.apache.org/docs/querying_data.html#spark-incr-query,当前的 Spark data source 可以指定消费的起始和结束 commit 时间,读取 commit 增量的数据集。但是内部的实现不够高效:拉取每个 commit 的全部目标文件再按照系统字段 hoodie_commit_time apply 过滤条件。


4.3 Streaming 读

0.8.0 版本的 HUDI Flink writer 支持实时的增量订阅,可用于同步 CDC 数据,日常的数据同步 ETL pipeline。Flink 的 streaming 读做到了真正的流式读取,source 定期监控新增的改动文件,将读取任务下派给读 task。


5. Compaction


  • 没有 base file:走 copy on write insert 流程,直接 merge 所有的 log file 并写 base file
  • 有 base file:走 copy on write upsert 流程,* 先读 log file 建 index,再读 base file,最后读 log file 写新的 base file

Flink 和 Spark streaming 的 writer 都可以 apply 异步的 compaction 策略,按照间隔 commits 数或者时间来触发 compaction 任务,在独立的 pipeline 中执行。


6. 总结


通过对写流程的梳理我们了解到 HUDI 相对于其他数据湖方案的核心优势:

  • 写入过程充分优化了文件存储的小文件问题,Copy On Write 写会一直将一个 bucket (FileGroup)的 base 文件写到设定的阈值大小才会划分新的 bucket;Merge On Read 写在同一个 bucket 中,log file 也是一直 append 直到大小超过设定的阈值 roll over。
  • 对 UPDATE 和 DELETE 的支持非常高效,一条 record 的整个生命周期操作都发生在同一个 bucket,不仅减少小文件数量,也提升了数据读取的效率(不必要的 join 和 merge)。

0.8.0 的 HUDI Flink 支持了 streaming 消费 HUDI 表,在后续版本还会支持 watermark 机制,让 HUDI Flink 承担 streaming ETL pipeline 的中间层,成为数据湖/仓建设中流批一体的中间计算层。


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
7月前
|
存储 Apache
Apache Hudi Savepoint实现分析
Apache Hudi Savepoint实现分析
122 0
|
1月前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
79 2
|
5月前
|
SQL 分布式计算 Apache
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)
本文将在 Docker 环境下,为读者介绍如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境,并对各功能操作进行演示,帮助读者快速入门。
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)
|
6月前
|
消息中间件 Java Kafka
实时计算 Flink版操作报错合集之从hudi读数据,报错NoSuchMethodError:org.apache.hudi.format.cow.vector.reader.PaequetColumnarRowSplit.getRecord(),该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
129 0
|
7月前
|
存储 SQL 分布式计算
使用Amazon EMR和Apache Hudi在S3上插入,更新,删除数据
使用Amazon EMR和Apache Hudi在S3上插入,更新,删除数据
228 0
|
7月前
|
存储 分布式计算 Hadoop
一文了解Apache Hudi架构、工具和最佳实践
一文了解Apache Hudi架构、工具和最佳实践
1310 0
|
7月前
|
SQL 分布式计算 NoSQL
使用Apache Hudi和Debezium构建健壮的CDC管道
使用Apache Hudi和Debezium构建健壮的CDC管道
81 0
|
7月前
|
存储 SQL 消息中间件
Apache Hudi:统一批和近实时分析的存储和服务
Apache Hudi:统一批和近实时分析的存储和服务
109 0
|
9天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
280 33
The Past, Present and Future of Apache Flink
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
830 13
Apache Flink 2.0-preview released

推荐镜像

更多