数据结构与算法——二叉树(下)

简介: 前面的文章说到了二叉树,其实今天讲的二叉搜索(查找)树就是二叉树最常用的一种形式,它支持高效的查找、插入、删除操作,它的定义是这样的:对于树中的任意一个节点,其左子节点值必须小于该节点,其右子节点必须大于该节点。

1. 概述


前面的文章说到了二叉树,其实今天讲的二叉搜索(查找)树就是二叉树最常用的一种形式,它支持高效的查找、插入、删除操作,它的定义是这样的:对于树中的任意一个节点,其左子节点值必须小于该节点,其右子节点必须大于该节点。例如下图中的几种树都是二叉查找树:


2. 二叉搜索树的查找


我们直接拿查找的数据和根节点数据作比较,如果大于根节点,则在右子树中递归查找,如果小于根节点,则在左子树中查找,如果等于,则直接返回。就像下图的查找过程:

结合代码能够更直观的理解:

public class BinaryTree {
    private Node head = null;//树的根节点
    //1.查找节点
    public Node find(int value){
        Node p = head;
        while (p != null){
            if (p.getData() > value) p = p.left;
            else if (p.getData() < value) p = p.right;
            else return p;
        }
        return null;
    }
    //定义树的节点
    public static class Node{
        private int data;
        private Node left;
        private Node right;
        public Node(int data) {
            this.data = data;
            this.left = null;
            this.right = null;
        }
        public int getData() {
            return data;
        }
    }
}

3. 二叉搜索树的插入


插入操作和查找其实比较的类似,都是需要拿插入的数据和树中的数据进行比较,如果插入的数据大于树节点数据,并且节点的右子树为空,则直接插入到右子树,否则继续在右子树中递归查找位置;如果插入的数据小于树节点数据,并且节点的左子树为空,则直接插入到左子树,否则继续在左子树中递归查找位置。

结合代码理解一下:

public void insert(int value){
        Node node = new Node(value);
        if (head == null){
            head = node;
            return;
        }
        Node p = head;
        while (p != null){
            if (p.getData() > value){
                if (p.left == null) {
                    p.left = node;
                    return;
                }
                p = p.left;
            }
            else {
                if (p.right == null) {
                    p.right = node;
                    return;
                }
                p = p.right;
            }
        }
    }

4. 二叉搜索树的删除


前面的查找和插入操作都比较的简单易懂,但是二叉搜索树的删除操作就比较的复杂了,分为了几种情况。

  • 第一种情况:要删除的节点没有子节点,这样的话,可以直接将指向该节点的父节点指针设为 null。
  • 第二种情况:要删除的节点只有一个子节点,直接将该节点的父节点的指针,指向该节点的子节点即可。
  • 第三种情况:要删除的节点有两个子节点,我们需要在删除节点的右子树中,寻找到最小的那个节点,然后将其放在删除的节点的位置上。

三种情况对应下图:

结合代码来理解一下:

 

//3.删除数据
    public void delete(int value){
        Node p = head;
        Node pParent = null;//p节点的父节点
        //先找到这个节点
        while (p != null && p.getData() != value){
            pParent = p;
            if (p.getData() > value)p = p.left;
            else p = p.right;
        }
        if (p == null) return;//表示没有找到值为value的节点
        //1.假如要删除的节点有两个子节点
        if (p.left != null && p.right != null){
            //查找p节点的右子节点中的最小值
            Node minP = p.right;
            Node minPP = p;//minPP表示minP的父节点
            while (minP.left != null){
                minPP = minP;
                minP = minP.left;
            }
            p.data = minP.getData();
            if (minPP == p) p.right = null;
            else minPP.left = null;
            return;
        }
        //2.假如删除的节点p是叶子节点或只有一个子节点
        Node child = null;
        if (p.left != null) child = p.left;
        else if (p.right != null) child = p.right;
        if (pParent == null) head = child;
        else if (pParent.left == p) pParent.left = child;
        else pParent.right = child;
    }

5. 二叉搜索树分析


最后,还有两个需要说明一下,前面说到了二叉树的三种遍历方式,其中,中序遍历的方式是先遍历节点的左子节点,再遍历这个节点本身,然后遍历节点的右子节点。所以,如果中序遍历二叉搜索树,会得到一个有序的数据,时间复杂度是 O(n),所以二叉搜索树又叫做二叉排序树

在理想的情况下,我们的二叉树是一棵满二叉树或者完全二叉树,那么查找、插入、删除操作十分的高效,时间复杂度是 O(logn),但是,如果二叉树的左右子树非常的不平衡,极端的情况下,可能会退化为链表,那么性能就下降了。

所以,我们需要一种方式来维持二叉树的平衡,最好是将其维持为满二叉树或者完全二叉树,这就是后面会说到的平衡二叉查找树,常见的有 AVL 树,红黑树。

相关文章
|
8天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
11天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
32 5
|
15天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
65 8
|
14天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
20 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
21 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
27 1
|
1月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
24 1
|
1月前
|
存储
【数据结构】二叉树链式结构——感受递归的暴力美学
【数据结构】二叉树链式结构——感受递归的暴力美学
|
1月前
|
存储 算法
【二叉树】—— 算法题
【二叉树】—— 算法题
【二叉树】—— 算法题