【每日算法】 二叉树的垂序遍历的两种方式 :「DFS + 哈希表 + 排序」&「DFS + 优先队列(堆)」 |Python 主题月

简介: 【每日算法】 二叉树的垂序遍历的两种方式 :「DFS + 哈希表 + 排序」&「DFS + 优先队列(堆)」 |Python 主题月

网络异常,图片无法展示
|


题目描述



这是 LeetCode 上的 987. 二叉树的垂序遍历 ,难度为 困难


Tag : 「数据结构运用」、「二叉树」、「哈希表」、「排序」、「优先队列」、「DFS」


给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历 序列。


对位于 (row, col) 的每个结点而言,其左右子结点分别位于 (row + 1, col - 1) 和 (row + 1, col + 1) 。树的根结点位于 (0, 0) 。


二叉树的 垂序遍历 从最左边的列开始直到最右边的列结束,按列索引每一列上的所有结点,形成一个按出现位置从上到下排序的有序列表。如果同行同列上有多个结点,则按结点的值从小到大进行排序。


返回二叉树的 垂序遍历 序列。


示例 1:

网络异常,图片无法展示
|


输入:root = [3,9,20,null,null,15,7]
输出:[[9],[3,15],[20],[7]]
解释:
列 -1 :只有结点 9 在此列中。
列  0 :只有结点 3 和 15 在此列中,按从上到下顺序。
列  1 :只有结点 20 在此列中。
列  2 :只有结点 7 在此列中。
复制代码


示例 2:


网络异常,图片无法展示
|


输入:root = [1,2,3,4,5,6,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
列 -2 :只有结点 4 在此列中。
列 -1 :只有结点 2 在此列中。
列  0 :结点 1 、5 和 6 都在此列中。
          1 在上面,所以它出现在前面。
          5 和 6 位置都是 (2, 0) ,所以按值从小到大排序,5 在 6 的前面。
列  1 :只有结点 3 在此列中。
列  2 :只有结点 7 在此列中。
复制代码


示例 3:

网络异常,图片无法展示
|

输入:root = [1,2,3,4,6,5,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
这个示例实际上与示例 2 完全相同,只是结点 5 和 6 在树中的位置发生了交换。
因为 5 和 6 的位置仍然相同,所以答案保持不变,仍然按值从小到大排序。
复制代码


提示:


  • 树中结点数目总数在范围 [1, 10]


DFS + 哈希表 + 排序



根据题意,我们需要按照优先级「“列号从小到大”,对于同列节点,“行号从小到大”,对于同列同行元素,“节点值从小到大”」进行答案构造。


因此我们可以对树进行遍历,遍历过程中记下这些信息 (col, row, val)(col,row,val),然后根据规则进行排序,并构造答案。


我们可以先使用「哈希表」进行存储,最后再进行一次性的排序。


Java 代码:


class Solution {
    Map<TreeNode, int[]> map = new HashMap<>(); // col, row, val
    public List<List<Integer>> verticalTraversal(TreeNode root) {
        map.put(root, new int[]{0, 0, root.val});
        dfs(root);
        List<int[]> list = new ArrayList<>(map.values());
        Collections.sort(list, (a, b)->{
            if (a[0] != b[0]) return a[0] - b[0];
            if (a[1] != b[1]) return a[1] - b[1];
            return a[2] - b[2];
        });
        int n = list.size();
        List<List<Integer>> ans = new ArrayList<>();
        for (int i = 0; i < n; ) {
            int j = i;
            List<Integer> tmp = new ArrayList<>();
            while (j < n && list.get(j)[0] == list.get(i)[0]) tmp.add(list.get(j++)[2]);
            ans.add(tmp);
            i = j;
        }
        return ans;
    }
    void dfs(TreeNode root) {
        if (root == null) return ;
        int[] info = map.get(root);
        int col = info[0], row = info[1], val = info[2];
        if (root.left != null) {
            map.put(root.left, new int[]{col - 1, row + 1, root.left.val});
            dfs(root.left);
        }
        if (root.right != null) {
            map.put(root.right, new int[]{col + 1, row + 1, root.right.val});
            dfs(root.right);
        }
    }
}
复制代码


Python 3 代码:


class Solution:
    def verticalTraversal(self, root: TreeNode) -> List[List[int]]:
        def dfs(node):
            if not node:
                return
            col, row, val = hashmap[node]
            if node.left:
                hashmap[node.left] = [col - 1, row + 1, node.left.val]
                dfs(node.left)
            if node.right:
                hashmap[node.right] = [col + 1, row + 1, node.right.val]
                dfs(node.right)
        hashmap = dict() # col, row, val
        hashmap[root] = [0, 0, root.val]
        dfs(root)
        lt = sorted(hashmap.values()) # 等价于加上key=lambda x:(x[0], x[1], x[2])
        n = len(lt)
        ans = []
        i = 0
        while i < n:
            j = i
            tmp = []
            while j < n and lt[j][0] == lt[i][0]:
                tmp.append(lt[j][2])
                j += 1
            ans.append(tmp)
            i = j
        return ans
复制代码


  • 时间复杂度:令总节点数量为 nn,填充哈希表时进行树的遍历,复杂度为 O(n)O(n);构造答案时需要进行排序,复杂度为 O(n\log{n})O(nlogn)。整体复杂度为 O(n\log{n})O(nlogn)
  • 空间复杂度:O(n)O(n)


DFS + 优先队列(堆)



显然,最终要让所有节点的相应信息有序,可以使用「优先队列(堆)」边存储边维护有序性。


Java 代码:


class Solution {
    PriorityQueue<int[]> q = new PriorityQueue<>((a, b)->{ // col, row, val
        if (a[0] != b[0]) return a[0] - b[0];
        if (a[1] != b[1]) return a[1] - b[1];
        return a[2] - b[2];
    });
    public List<List<Integer>> verticalTraversal(TreeNode root) {
        int[] info = new int[]{0, 0, root.val};
        q.add(info);
        dfs(root, info);
        List<List<Integer>> ans = new ArrayList<>();
        while (!q.isEmpty()) {
            List<Integer> tmp = new ArrayList<>();
            int[] poll = q.peek();
            while (!q.isEmpty() && q.peek()[0] == poll[0]) tmp.add(q.poll()[2]);
            ans.add(tmp);
        }
        return ans;
    }
    void dfs(TreeNode root, int[] fa) {
        if (root.left != null) {
            int[] linfo = new int[]{fa[0] - 1, fa[1] + 1, root.left.val};
            q.add(linfo);
            dfs(root.left, linfo);
        }
        if (root.right != null) {
            int[] rinfo = new int[]{fa[0] + 1, fa[1] + 1, root.right.val};
            q.add(rinfo);
            dfs(root.right, rinfo);
        }
    }
}
复制代码


Python 3 代码:


class Solution:
    def verticalTraversal(self, root: TreeNode) -> List[List[int]]:
        def dfs(node, fa):
            if node.left:
                linfo = (fa[0]-1,fa[1]+1,node.left.val)
                heapq.heappush(q, linfo)
                dfs(node.left, linfo)
            if node.right:
                rinfo = (fa[0]+1,fa[1]+1,node.right.val)
                heapq.heappush(q, rinfo)
                dfs(node.right, rinfo)
        info = (0, 0, root.val)
        q = [info]
        dfs(root, info)
        ans = []
        while q:
            tmp = []
            poll = q[0][0]
            while q and q[0][0] == poll:
                tmp.append(heapq.heappop(q)[2])
            ans.append(tmp)
        return ans
复制代码


  • 时间复杂度:令总节点数量为 nn,将节点信息存入优先队列(堆)复杂度为 O(n\log{n})O(nlogn);构造答案复杂度为 O(n\log{n})O(nlogn)。整体复杂度为 O(n\log{n})O(nlogn)
  • 空间复杂度:O(n)O(n)


最后



这是我们「刷穿 LeetCode」系列文章的第 No.987 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
13天前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
13天前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
2月前
|
运维 监控 算法
企业局域网监控软件中 Java 优先队列算法的核心优势
企业局域网监控软件是数字化时代企业网络安全与高效运营的基石,犹如一位洞察秋毫的卫士。通过Java实现的优先队列算法,它能依据事件优先级排序,确保关键网络事件如异常流量、数据泄露等被优先处理,保障系统稳定与安全。代码示例展示了如何定义网络事件类并使用PriorityQueue处理高优先级事件,尤其在面对疑似风险时迅速启动应急措施。这一核心技术助力企业在复杂网络环境中稳健前行,护航业务腾飞。
72 32
|
2月前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
64 10
|
4月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
225 7
|
4月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
181 8
|
4月前
|
算法 定位技术 Python
震惊!Python 图结构竟然可以这样玩?DFS&BFS 遍历技巧大公开
在 Python 编程中,图是一种重要的数据结构,而深度优先搜索(DFS)和广度优先搜索(BFS)是遍历图的两种关键算法。本文将通过定义图的数据结构、实现 DFS 和 BFS 算法,并通过具体示例展示其应用,帮助读者深入理解这两种算法。DFS 适用于寻找路径和检查图连通性,而 BFS 适用于寻找最短路径。掌握这些技巧,可以更高效地解决与图相关的复杂问题。
51 2
|
4月前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
70 4
|
4月前
|
算法 Python
Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛
图论在数据结构与算法中占据重要地位,应用广泛。本文通过Python代码实现深度优先搜索(DFS)和广度优先搜索(BFS),帮助读者掌握图的遍历技巧。DFS沿路径深入搜索,BFS逐层向外扩展,两者各具优势。掌握这些技巧,为解决复杂问题打下坚实基础。
71 2
|
4月前
|
搜索推荐 Python
快速排序的 Python 实践:从原理到优化,打造你的排序利器!
本文介绍了 Python 中的快速排序算法,从基本原理、实现代码到优化方法进行了详细探讨。快速排序采用分治策略,通过选择基准元素将数组分为两部分,递归排序。文章还对比了快速排序与冒泡排序的性能,展示了优化前后快速排序的差异。通过这些分析,帮助读者理解快速排序的优势及优化的重要性,从而在实际应用中选择合适的排序算法和优化策略,提升程序性能。
106 1