【小家java】原子操作你还在用Synchronized?Atomic、LongAdder你真有必要了解一下了(中)

简介: 【小家java】原子操作你还在用Synchronized?Atomic、LongAdder你真有必要了解一下了(中)

CAS失败—什么都不做


这个我就不再画图,说白了就是Z线程进来后,发现预期值和内存值不一样的时候,就什么都不做,就CAS失败,直接结束掉线程了。这个有些场景也会这么去干

CAS为什么是原子的呢?


有的人可能会问:CAS明明就有多部操作,但什么就是原子的呢?

解释如下:


Unsafe底层实际上是调用C代码,C代码调用汇编,最后生成出一条CPU指令cmpxchg,完成操作。这也就为啥CAS是原子性的,因为它是一条CPU指令,不会被打断。


CAS是原子性的,虽然你可能看到比较后再修改(compare and swap)觉得会有两个操作,但终究是原子性的


CAS带来的ABA问题


什么是ABA问题呢?结束上面的例子


1.线程A和线程C同时读到count变量,所以线程A和线程C的内存值和预期值都为10


2.此时线程A使用CAS将count值修改成100


3.修改完后,就在这时,线程B进来了(因为CPU随机,所以是有可能先执行B再执行C的),读取得到count的值为100(内存值和预期值都是100),将count值修改成10


4.线程C拿到执行权,发现内存值是10,预期值也是10,将count值修改成11


产生的问题是:线程C无法得知线程A和线程B修改过的count值,这样是有风险的。,如下:

场景:蛋糕店回馈客户,对于会员卡余额小于20的客户一次性赠送20,刺激消费,每个客户只能赠送一次


    public static void main(String[] args) {
         //在这里使用AtomicReference  里面装着用户的余额  初始卡余额小于20
        final AtomicReference<Integer> money = new AtomicReference<>(19);
        //模拟一个生产者消费者模型
        // 模拟多个线程更新数据库,为用户充值
        for (int i = 0; i < 3; i++) {
            new Thread(() -> {
                while (true) {
                    while (true) {
                        Integer m = money.get();
                        if (m < 20) {
                            if (money.compareAndSet(m, m + 20)) {
                                System.out.println("余额小于20,充值成功。余额:"
                                        + money.get() + "元");
                                break;
                            }
                        } else {
                            System.out.println("余额大于20,无需充值!");
                            break;
                        }
                    }
                    try {
                        Thread.sleep(3000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }).start();
        }
        // 用户消费进程,模拟消费行为
        new Thread(() -> {
            //在这里的for循环,太快很容易看不到结果
            for (int i = 0; i < 1000; i++) {
                while (true) {
                    Integer m = money.get();
                    if (m > 10) {
                        System.out.println("大于10元");
                        if (money.compareAndSet(m, m - 10)) {
                            System.out.println("成功消费10,卡余额:" + money.get());
                            break;
                        }
                    } else {
                        System.out.println("余额不足!");
                        break;
                    }
                }
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }


输出:


余额小于20,充值成功。余额:39元
余额大于20,无需充值!
余额大于20,无需充值!
大于10元
成功消费10,卡余额:29
大于10元
成功消费10,卡余额:19
大于10元
成功消费10,卡余额:9
余额小于20,充值成功。余额:29元
余额大于20,无需充值!
余额大于20,无需充值!
大于10元
成功消费10,卡余额:19
大于10元
成功消费10,卡余额:9
余额不足!
余额大于20,无需充值!
余额大于20,无需充值!
余额小于20,充值成功。余额:29元


我们看到,这个帐号先后反复多次进行充值。,怎么回事呢?


原因是帐户余额被反复修改,修改后的值等于原来的值,使得CAS操作无法正确判断当前的数据状态。这在业务上是不允许的(只有高并发下才可能会出现哦,并不是说记录下赠送次数就能简单解决的哦)。


ABA问题如何解决



其实java也考虑到了这个问题,所以提供给予我们解决方案了


我们可以使用JDK给我们提供的AtomicStampedReference和AtomicMarkableReference类。


用代码解决上面的充值问题:该动起来也是非常的简单

   public static void main(String[] args) {
        //在这里使用AtomicReference  里面装着用户的余额  初始卡余额小于20
        final AtomicStampedReference<Integer> money = new AtomicStampedReference<>(19, 0);
        for (int i = 0; i < 3; i++) {
            //拿到当前的版本号
            final int timestamp = money.getStamp();
            new Thread(() -> {
                while (true) {
                    while (true) {
                        Integer m = money.getReference();
                        if (m < 20) {
                            //注意此处:timestamp版本号做了+1操作
                            if (money.compareAndSet(m, m + 20, timestamp,
                                    timestamp + 1)) {
                                System.out.println("余额小于20,充值成功。余额:"
                                        + money.getReference() + "元");
                                break;
                            }
                        } else {
                            System.out.println("余额大于20,无需充值!");
                            break;
                        }
                    }
                    try {
                        Thread.sleep(3000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }).start();
        }
        // 用户消费进程,模拟消费行为
        new Thread(() -> {
            for (int i = 0; i < 100; i++) {
                while (true) {
                    //拿到当前的版本号
                    int timestamp = money.getStamp();
                    Integer m = money.getReference();
                    if (m > 10) {
                        System.out.println("大于10元");
                        if (money.compareAndSet(m, m - 10, timestamp,
                                timestamp + 1)) {
                            System.out.println("成功消费10,卡余额:"
                                    + money.getReference());
                            break;
                        }
                    } else {
                        System.out.println("余额不足!");
                        break;
                    }
                }
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }


运行看输出结果为:


余额小于20,充值成功。余额:39元
余额大于20,无需充值!
余额大于20,无需充值!
大于10元
成功消费10,卡余额:29
大于10元
成功消费10,卡余额:19
大于10元
成功消费10,卡余额:9
余额不足!
余额不足!
余额不足!
余额不足!


我们发现,只为他充值了一次,之后一直消费都是余额不足的状态了。因此当高并发又可能存在ABA的情况下,这样就能彻底杜绝问题了


简单来说就是在给为这个对象提供了一个版本,并且这个版本如果被修改了,是自动更新的。原理大概就是:维护了一个Pair对象,Pair对象存储我们的对象引用和一个stamp值。每次CAS比较的是两个Pair对象

    private static class Pair<T> {
        final T reference;
        final int stamp;
        private Pair(T reference, int stamp) {
            this.reference = reference;
            this.stamp = stamp;
        }
        static <T> Pair<T> of(T reference, int stamp) {
            return new Pair<T>(reference, stamp);
        }
    }


Atomic原子变量类的使用


java.util.concurrent.atomic原子操作包为我们提供了四类原子操作:

提供类如下截图:


image.png


1.原子更新基本类型

AtomicBoolean:布尔型

AtomicInteger:整型

AtomicLong:长整型


2.原子更新数组

AtomicIntegerArray:数组里的整型

AtomicLongArray:数组里的长整型

AtomicReferenceArray:数组里的引用类型


3.原子更新引用

AtomicReference<V>:引用类型

AtomicStampedReference:带有版本号的引用类型(可以防止ABA问题)

AtomicMarkableReference:带有标记位的引用类型


4.原子更新字段

AtomicIntegerFieldUpdater:对象的属性是整型

AtomicLongFieldUpdater:对象的属性是长整型

AtomicReferenceFieldUpdater:对象的属性是引用类型


5.JDK8新增

DoubleAccumulator、LongAccumulator、

DoubleAdder、LongAdder


是对AtomicLong等类的改进。比如LongAccumulator与LongAdder在高并发环境下比AtomicLong更高效。

相关文章
|
1天前
|
存储 安全 Java
Java中synchronized锁的深入理解
Java中synchronized锁的深入理解
21 1
|
1天前
|
安全 算法 Java
Java一分钟:线程同步:synchronized关键字
【5月更文挑战第11天】Java中的`synchronized`关键字用于线程同步,防止竞态条件,确保数据一致性。本文介绍了其工作原理、常见问题及避免策略。同步方法和同步代码块是两种使用形式,需注意避免死锁、过度使用导致的性能影响以及理解锁的可重入性和升级降级机制。示例展示了同步方法和代码块的运用,以及如何避免死锁。正确使用`synchronized`是编写多线程安全代码的核心。
57 2
|
1天前
|
安全 Java 程序员
【Java多线程】面试常考——锁策略、synchronized的锁升级优化过程以及CAS(Compare and swap)
【Java多线程】面试常考——锁策略、synchronized的锁升级优化过程以及CAS(Compare and swap)
12 0
|
1天前
|
存储 安全 Java
【亮剑】Java并发编程涉及`ThreadLocal`、`Volatile`、`Synchronized`和`Atomic`四个关键机制
【4月更文挑战第30天】Java并发编程涉及`ThreadLocal`、`Volatile`、`Synchronized`和`Atomic`四个关键机制。`ThreadLocal`为每个线程提供独立变量副本;`Volatile`确保变量可见性,但不保证原子性;`Synchronized`实现同步锁,保证单线程执行;`Atomic`类利用CAS实现无锁并发控制。理解其原理有助于编写高效线程安全代码。根据业务场景选择合适机制至关重要。
|
1天前
|
安全 Java 编译器
【Java EE】总结12种锁策略以及synchronized的实现原理
【Java EE】总结12种锁策略以及synchronized的实现原理
|
1天前
|
安全 Java 编译器
是时候来唠一唠synchronized关键字了,Java多线程的必问考点!
本文简要介绍了Java中的`synchronized`关键字,它是用于保证多线程环境下的同步,解决原子性、可见性和顺序性问题。从JDK1.6开始,synchronized进行了优化,性能得到提升,现在仍可在项目中使用。synchronized有三种用法:修饰实例方法、静态方法和代码块。文章还讨论了synchronized修饰代码块的锁对象、静态与非静态方法调用的互斥性,以及构造方法不能被同步修饰。此外,通过反汇编展示了`synchronized`在方法和代码块上的底层实现,涉及ObjectMonitor和monitorenter/monitorexit指令。
26 0
|
1天前
|
安全 Java 调度
Java中,synchronized关键字你了解多少?
【4月更文挑战第16天】
55 14
|
1天前
|
安全 Java 开发者
Java并发编程:深入理解Synchronized关键字
【4月更文挑战第19天】 在Java多线程编程中,为了确保数据的一致性和线程安全,我们经常需要使用到同步机制。其中,`synchronized`关键字是最为常见的一种方式,它能够保证在同一时刻只有一个线程可以访问某个对象的特定代码段。本文将深入探讨`synchronized`关键字的原理、用法以及性能影响,并通过具体示例来展示如何在Java程序中有效地应用这一技术。
|
1天前
|
Java
浅谈Java的synchronized 锁以及synchronized 的锁升级
浅谈Java的synchronized 锁以及synchronized 的锁升级
8 0
|
1天前
|
Java
Java中的线程同步:synchronized关键字的深度解析
【4月更文挑战第14天】在多线程环境下,线程同步是一个重要的话题。Java提供了多种机制来实现线程同步,其中最常用且最重要的就是synchronized关键字。本文将深入探讨synchronized关键字的工作原理,使用方法以及注意事项,帮助读者更好地理解和使用这一重要的线程同步工具。