《Python极客项目编程 》——1.4 完整代码

简介:

本节书摘来自异步社区《Python极客项目编程 》一书中的第1章,第1.4节,作者 [美] Mahesh Venkitachalam,王海鹏 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.4 完整代码

下面是完整的程序。在https://github.com/electronut/pp/tree/master/playlist/ ,你也可以找到本项目的代码和一些测试数据。

import re, argparse
import sys
from matplotlib import pyplot
import plistlib
import numpy as np

def findCommonTracks(fileNames):
    """
    Find common tracks in given playlist files,
    and save them to common.txt.
    """
    # a list of sets of track names
    trackNameSets = []
    for fileName in fileNames:
        # create a new set
        trackNames = set()
        # read in playlist
        plist = plistlib.readPlist(fileName)
        # get the tracks
        tracks = plist['Tracks']
        # iterate through the tracks
        for trackId, track in tracks.items():
            try:
                # add the track name to a set
                trackNames.add(track['Name'])
            except:
                # ignore
                pass
        # add to list
        trackNameSets.append(trackNames)
        # get the set of common tracks
        commonTracks = set.intersection(*trackNameSets)
        # write to file
        if len(commonTracks) > 0:
            f = open("common.txt", 'w')
            for val in commonTracks:
                s = "%s\n" % val
                f.write(s.encode("UTF-8"))
            f.close()
            print("%d common tracks found. "
                  "Track names written to common.txt." % len(commonTracks))
        else:
            print("No common tracks!")

    def plotStats(fileName):
        """
        Plot some statistics by reading track information from playlist.
        """
        # read in a playlist
        plist = plistlib.readPlist(fileName)
        # get the tracks from the playlist
        tracks = plist['Tracks']
        # create lists of song ratings and track durations
        ratings = []
        durations = []
        # iterate through the tracks
        for trackId, track in tracks.items():
            try:
                ratings.append(track['Album Rating'])
                durations.append(track['Total Time'])
            except:
                # ignore
                pass
        # ensure that valid data was collected
        if ratings == [] or durations == []:
            print("No valid Album Rating/Total Time data in %s." % fileName)
            return

        # scatter plot
        x= np.array(durations, np.int32)
        # convert to minutes
        x = x/60000.0
        y = np.array(ratings, np.int32)
        pyplot.subplot(2, 1, 1)
        pyplot.plot(x, y, 'o')
        pyplot.axis([0, 1.05*np.max(x), -1, 110])
        pyplot.xlabel('Track duration')
        pyplot.ylabel('Track rating')

        # plot histogram
        pyplot.subplot(2, 1, 2)
        pyplot.hist(x, bins=20)
        pyplot.xlabel('Track duration')
        pyplot.ylabel('Count')
        # show plot
        pyplot.show()

    def findDuplicates(fileName):
        """
        Find duplicate tracks in given playlist.
        """
        print('Finding duplicate tracks in %s...' % fileName)
        # read in playlist
        plist = plistlib.readPlist(fileName)
        # get the tracks from the Tracks dictionary
        tracks = plist['Tracks']
        # create a track name dictionary
        trackNames = {}
        # iterate through tracks
        for trackId, track in tracks.items():
            try:
                name = track['Name']
                duration = track['Total Time']
                # look for existing entries
                if name in trackNames:
                    # if a name and duration match, increment the count
                    # round the track length to the nearest second
                    if duration//1000 == trackNames[name][0]//1000:
                        count = trackNames[name][1]
                        trackNames[name] = (duration, count+1)
                else:
                    # add dictionary entry as tuple (duration, count)
                    trackNames[name] = (duration, 1)
            except:
                # ignore
                pass
        # store duplicates as (name, count) tuples
        dups = []
        for k, v in trackNames.items():
            if v[1] > 1:
                dups.append((v[1], k))
        # save duplicates to a file
        if len(dups) > 0:
            print("Found %d duplicates. Track names saved to dup.txt" % len(dups))
        else:
            print("No duplicate tracks found!")
        f = open("dups.txt", 'w')
        for val in dups:
            f.write("[%d] %s\n" % (val[0], val[1]))
        f.close()

    # gather our code in a main() function
    def main():
        # create parser
        descStr = """
        This program analyzes playlist files (.xml) exported from iTunes.
        """
        parser = argparse.ArgumentParser(description=descStr)
        # add a mutually exclusive group of arguments
        group = parser.add_mutually_exclusive_group()

        # add expected arguments
        group.add_argument('--common', nargs='*', dest='plFiles', required=False)
        group.add_argument('--stats', dest='plFile', required=False)
        group.add_argument('--dup', dest='plFileD', required=False)

        # parse args
        args = parser.parse_args()

        if args.plFiles:
            # find common tracks
            findCommonTracks(args.plFiles)
        elif args.plFile:
            # plot stats
            plotStats(args.plFile)
    elif args.plFileD:
        # find duplicate tracks
        findDuplicates(args.plFileD)
    else:
        print("These are not the tracks you are looking for.")

# main method
if __name__ == '__main__':
    main()
相关文章
|
23天前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
556 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
28天前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
|
1月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
12天前
|
程序员 测试技术 开发工具
怎么开发Python第三方库?手把手教你参与开源项目!
大家好,我是程序员晚枫。本文将分享如何开发Python第三方库,并以我维护的开源项目 **popdf** 为例,指导参与开源贡献。Popdf是一个PDF操作库,支持PDF转Word、转图片、合并与加密等功能。文章涵盖从fork项目、本地开发、单元测试到提交PR的全流程,适合想了解开源贡献的开发者。欢迎访问[popdf](https://gitcode.com/python4office/popdf),一起交流学习!
75 21
怎么开发Python第三方库?手把手教你参与开源项目!
|
19天前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
75 28
|
1月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
1月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
37 4
|
1月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
1月前
|
Java API Docker
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
|
1月前
|
Docker Python 容器
Docker——阿里云服务器使用Docker部署python项目全程小记
本文记录了我在阿里云服务器上使用Docker部署python项目(flask为例)的全过程,在这里记录和分享一下,希望可以给大家提供一些参考。
150 0

热门文章

最新文章