netty系列之:netty中的ByteBuf详解

简介: netty系列之:netty中的ByteBuf详解

目录



简介


netty中用于进行信息承载和交流的类叫做ByteBuf,从名字可以看出这是Byte的缓存区,那么ByteBuf都有哪些特性呢?一起来看看。


ByteBuf详解


netty提供了一个io.netty.buffer的包,该包里面定义了各种类型的ByteBuf和其衍生的类型。


netty Buffer的基础是ByteBuf类,这是一个抽象类,其他的Buffer类基本上都是由该类衍生而得的,这个类也定义了netty整体Buffer的基调。


先来看下ByteBuf的定义:


public abstract class ByteBuf implements ReferenceCounted, Comparable<ByteBuf> {


ByteBuf实现了两个接口,分别是ReferenceCounted和Comparable。Comparable是JDK自带的接口,表示该类之间是可以进行比较的。而ReferenceCounted表示的是对象的引用统计。当一个ReferenceCounted被实例化之后,其引用count=1,每次调用retain() 方法,就会增加count,调用release() 方法又会减少count。当count减为0之后,对象将会被释放,如果试图访问被释放过后的对象,则会报访问异常。


如果一个对象实现了ReferenceCounted,并且这个对象里面包含的其他对象也实现了ReferenceCounted,那么当容器对象的count=0的时候,其内部的其他对象也会被调用release()方法进行释放。


综上,ByteBuf是一个可以比较的,可以计算引用次数的对象。他提供了序列或者随机的byte访问机制。


注意的是,虽然JDK中有自带的ByteBuffer类,但是netty中的 ByteBuf 算是对Byte Buffer的重新实现。他们没有关联关系。


创建一个Buff


ByteBuf是一个抽象类,并不能直接用来实例化,虽然可以使用ByteBuf的子类进行实例化操作,但是netty并不推荐。netty推荐使用io.netty.buffer.Unpooled来进行Buff的创建工作。Unpooled是一个工具类,可以为ByteBuf分配空间、拷贝或者封装操作。


下面是创建几个不同ByteBuf的例子:


import static io.netty.buffer.Unpooled.*;
   ByteBuf heapBuffer    = buffer(128);
   ByteBuf directBuffer  = directBuffer(256);
   ByteBuf wrappedBuffer = wrappedBuffer(new byte[128], new byte[256]);
   ByteBuf copiedBuffer  = copiedBuffer(ByteBuffer.allocate(128));


上面我们看到了4种不同的buff构建方式,普通的buff、directBuffer、wrappedBuffer和copiedBuffer。


普通的buff是固定大小的堆buff,而directBuffer是固定大小的direct buff。direct buff使用的是堆外内存,省去了数据到内核的拷贝,因此效率比普通的buff要高。


wrappedBuffer是对现有的byte arrays或者byte buffers的封装,可以看做是一个视图,当底层的数据发生变化的时候,Wrapped buffer中的数据也会发生变化。


Copied buffer是对现有的byte arrays、byte buffers 或者 string的深拷贝,所以它和wrappedBuffer是不同的,Copied buffer和原数据之间并不共享数据。


随机访问Buff


熟悉集合的朋友应该都知道,要想随机访问某个集合,一定是通过index来访问的,ByteBuf也一样,可以通过capacity或得其容量,然后通过getByte方法随机访问其中的byte,如下所示:


//随机访问
        ByteBuf buffer = heapBuffer;
        for (int i = 0; i < buffer.capacity(); i ++) {
            byte b = buffer.getByte(i);
            System.out.println((char) b);
        }


序列读写


读写要比访问复杂一点,ByteBuf 提供了两个index用来定位读和写的位置,分别是readerIndex 和 writerIndex ,两个index分别控制读和写的位置。


下图显示的一个buffer被分成了三部分,分别是可废弃的bytes、可读的bytes和可写的bytes。


+-------------------+------------------+------------------+
    | discardable bytes |  readable bytes  |  writable bytes  |
    |                   |     (CONTENT)    |                  |
    +-------------------+------------------+------------------+
    |                   |                  |                  |
    0      <=      readerIndex   <=   writerIndex    <=    capacity


上图还表明了readerIndex、writerIndex和capacity的大小关系。


其中readable bytes是真正的内容,可以通过调用read* 或者skip* 的方法来进行访问或者跳过,调用这些方法的时候,readerIndex会同步增加,如果超出了readable bytes的范围,则会抛出IndexOutOfBoundsException。默认情况下readerIndex=0。


下面是一个遍历readable bytes的例子:


//遍历readable bytes
        while (directBuffer.isReadable()) {
            System.out.println(directBuffer.readByte());
        }


首先通过判断是否是readable来决定是否调用readByte方法。


Writable bytes是一个未确定的区域,等待被填充。可以通过调用write*方法对其操作,同时writerIndex 会同步更新,同样的,如果空间不够的话,也会抛出IndexOutOfBoundsException。默认情况下 新分配的writerIndex =0 ,而wrapped 或者copied buffer的writerIndex=buf的capacity。


下面是一个使用writable Byte的例子:


//写入writable bytes
        while (wrappedBuffer.maxWritableBytes() >= 4) {
            wrappedBuffer.writeInt(new Random().nextInt());
        }


Discardable bytes是已经被读取过的bytes,初始情况下它的值=0,每当readerIndex右移的时候,Discardable bytes的空间就会增加。如果想要完全删除或重置Discardable bytes,则可以调用discardReadBytes()方法,该方法会将Discardable bytes空间删除,将多余的空间放到writable bytes中,如下所示:


调用 discardReadBytes() 之前:
    +-------------------+------------------+------------------+
    | discardable bytes |  readable bytes  |  writable bytes  |
    +-------------------+------------------+------------------+
    |                   |                  |                  |
    0      <=      readerIndex   <=   writerIndex    <=    capacity
调用 discardReadBytes()之后:
    +------------------+--------------------------------------+
    |  readable bytes  |    writable bytes (got more space)   |
    +------------------+--------------------------------------+
    |                  |                                      |


readerIndex (0) <= writerIndex (decreased) <= capacity


注意,虽然writable bytes变多了,但是其内容是不可控的,并不能保证里面的内容是空的或者不变。


调用clear()方法会将readerIndex 和 writerIndex 清零,注意clear方法只会设置readerIndex 和 writerIndex 的值,并不会清空content,看下面的示意图:


调用 clear()之前:
    +-------------------+------------------+------------------+
    | discardable bytes |  readable bytes  |  writable bytes  |
    +-------------------+------------------+------------------+
    |                   |                  |                  |
    0      <=      readerIndex   <=   writerIndex    <=    capacity
调用 clear()之后:
    +---------------------------------------------------------+
    |             writable bytes (got more space)             |
    +---------------------------------------------------------+
    |                                                         |
    0 = readerIndex = writerIndex            <=            capacity


搜索


ByteBuf提供了单个byte的搜索功能,如 indexOf(int, int, byte) 和 bytesBefore(int, int, byte)两个方法。


如果是要对ByteBuf遍历进行搜索处理的话,可以使用 forEachByte(int, int, ByteProcessor),这个方法接收一个ByteProcessor用于进行复杂的处理。


其他衍生buffer方法


ByteBuf还提供了很多方法用来创建衍生的buffer,如下所示:


duplicate()
slice()
slice(int, int)
readSlice(int)
retainedDuplicate()
retainedSlice()
retainedSlice(int, int)
readRetainedSlice(int)


要注意的是,这些buf是建立在现有buf基础上的衍生品,他们的底层内容是一样的,只有readerIndex, writerIndex 和做标记的index不一样。所以他们和原buf是有共享数据的。


如果你希望的是新建一个全新的buffer,那么可以使用copy()方法或者前面提到的Unpooled.copiedBuffer。


在前面小节中,我们讲到ByteBuf是一个ReferenceCounted,这个特征在衍生buf中就用到了。我们知道调用retain() 方法的时候,引用count会增加,但是对于 duplicate(), slice(), slice(int, int) 和 readSlice(int) 这些方法来说,虽然他们也是引用,但是没有调用retain()方法,这样原始数据会在任意一个Buf调用release()方法之后被回收。


如果不想有上面的副作用,那么可以将方法替换成retainedDuplicate(), retainedSlice(), retainedSlice(int, int) 和 readRetainedSlice(int) ,这些方法会调用retain()方法以增加一个引用。


和现有JDK类型的转换


之前提到了ByteBuf 是对ByteBuffer的重写,他们是不同的实现。虽然这两个不同,但是不妨碍将ByteBuf转换ByteBuffer。


当然,最简单的转换是把ByteBuf转换成byte数组byte[]。要想转换成byte数组,可以先调用hasArray() 进行判断,然后再调用array()方法进行转换。


同样的ByteBuf还可以转换成为ByteBuffer ,可以先调用 nioBufferCount()判断能够转换成为 ByteBuffers的个数,再调用nioBuffer() 进行转换。


返回的ByteBuffer是对现有buf的共享或者复制,对返回之后buffer的position和limit修改不会影响到原buf。


最后,使用toString(Charset) 方法可以将ByteBuf转换成为String。


总结



ByteBuf是netty的底层基础,是传输数据的承载对象,深入理解ByteBuf就可以搞懂netty的设计思想,非常不错。


相关文章
|
8月前
|
Java API 容器
《跟闪电侠学Netty》阅读笔记 - 数据载体ByteBuf
《跟闪电侠学Netty》阅读笔记 - 数据载体ByteBuf
146 0
|
Java API 开发者
Netty详解ByteBuf
Netty详解ByteBuf
115 0
|
7月前
netty查看ByteBuf工具
netty查看ByteBuf工具
|
8月前
|
Java API 索引
Netty Review - ByteBuf 读写索引 详解
Netty Review - ByteBuf 读写索引 详解
212 1
|
8月前
|
API 容器
《跟闪电侠学Netty》阅读笔记 - 数据载体ByteBuf(一)
《跟闪电侠学Netty》阅读笔记 - 数据载体ByteBuf
84 0
《跟闪电侠学Netty》阅读笔记 - 数据载体ByteBuf(一)
|
8月前
|
Java API
《跟闪电侠学Netty》阅读笔记 - 数据载体ByteBuf(二)
《跟闪电侠学Netty》阅读笔记 - 数据载体ByteBuf
91 0
|
存储 Java Linux
Netty ByteBuf 的零拷贝(Zero Copy)详解
Netty ByteBuf 的零拷贝(Zero Copy)详解
230 0
Netty之ByteBuf解读(中)
Netty之ByteBuf解读(中)
|
缓存 算法 Java