《数据分析实战 基于EXCEL和SPSS系列工具的实践》一第3章 数据采集与整理

简介: 中国有句老话就是“路遥知马力,日久见人心”,在数据方面也是如此。数据的时间跨度有时候也称为“数据年龄”,对于同样的数据指标而言,若“数据年龄”分别为5年和1年,差距其实是挺大的。数据年龄越长,往往越能说明问题。

本节书摘来自华章出版社《数据分析实战
基于EXCEL和SPSS系列工具的实践》一书中的第3章,第3.1节,纪贺元 著,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第3章

数据采集与整理

巧妇难为无米之炊,对于数据分析而言,数据收集是极其重要的一步。我曾经听到有人说过,只要有数据,分析嘛,总归做得出来的,我个人基本同意这个观点。
但大多数情况下,我们面临的都不是现成的数据,需要有一个企业外或企业内的数据收集过程,例如宏观经济数据的收集、市场调查数据的采集等,下面就来看看数据采集需要注意的几条重要原则。

3.1 数据采集的几条重要原则

3.1.1 要足够“复杂”

先说一个跟客户接触的例子。一个国企学员课间休息时来问我:“老师,我们领导经常批评我,说我们写的工作报告(数据报告)太简单了,你能看看我们写的报告吗?”我到他电脑前面看了一下,报告确实挺简单的,感觉就是几百个字吧,再看看数据,大概只有6列的样子,难怪领导不满意。
可见,在采集数据的时候,必须要注意数据的复杂性,如同1.1节所说,要综合考虑数据量、复杂度、颗粒度等因素。
都说通过实例说明体会更深,下面再来看另一个例子。数年前,我参与了一家建筑涂料公司发展规划的制作,该公司希望通过对各种信息数据进行分析,从而对未来5年中国的产品发展市场份额有一个整体规划和了解。
让我们看看他们收集了哪些数据,如图3-1所示。

3_1


可以看到,要收集的数据不少,但事实上,想要搞清楚企业在未来数年中可能出现的市场态势,即使这些数据都能够顺利找到,可能仍然是不够的。

3.1.2 要足够“细”

“细”实际上就是颗粒度的意思,稍微有点数据收集经验的人大概都知道,要收集年度的数据其实相对比较容易,如果粒度为季度,可能就会有点问题了,到月则很难了,至于每周的数据,那就更不要想了。
不过,也不是每个公司都如此,曾有证券公司做定量分析的人说过,证券数据分析虽然不好做,但是有一点好,起码不用为数据发愁,因为证券系统可以提供最细到1分钟的数据,自然,任何周期的数据和指标都可以自己计算得出。

3.1.3 要有“跨度”

这里讲的“跨度”涉及两个方面,一是数据的时间跨度;二是数据的属性跨度。
中国有句老话就是“路遥知马力,日久见人心”,在数据方面也是如此。数据的时间跨度有时候也称为“数据年龄”,对于同样的数据指标而言,若“数据年龄”分别为5年和1年,差距其实是挺大的。数据年龄越长,往往越能说明问题。
属性跨度稍微难理解一点,实际上就是尽量要找不同的数据,如图3-1,我们找了宏观经济的数据,例如GDP、经济发展增速;也找了全国人口变迁、流动的数据,还找了竞争对手市场占有率的数据等。总之,所找的数据越“杂”,数据跨度就越大,往往也就越能说明问题。

3.1.4 要有可行性

数据收集的一个重要思考维度就是可行性,做过数据采集的人都知道,有时候数据采集的难度之大,会让你觉得这个事情都做不下去了。
我供职过的企业曾经给中国移动的几个省分公司做过供应商,有一次A省分公司让我们了解移动客户的情况,并且给出了一个“客户画像”(这在当时是一个流行的术语,直到现在还有客户提及),那个时候不像现在,手机号码是实名制的,当时中国移动的各个省分公司的全球通手机号比例一般都在20%以下,大部分的手机用户都是神州行和动感地带的,我们根本不知道用户特征,甚至不知道客户的性别。这种情况下,要进行数据收集是很困难的。
还有一个是营销活动数据的收集案例,我们曾经为中国移动的某省分公司收集过营销活动的数据,目的是想知道移动做了营销活动之后,客户的反应情况。当时移动做业务营销的主要方式是短信群发,判断客户对营销活动有反应的终极标准是客户订制了该业务,当然也有一些客户是到移动营业厅或拨打移动客服号1860(当初的客服号,现在改成10086)咨询了该业务。可以想象,在当时的条件下收集这样的数据是何其困难。

相关文章
|
5天前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
133 2
|
10天前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
13天前
|
SQL 供应链 数据可视化
这可能是最适合探索式数据分析的工具
SPL(Structured Process Language)是一款结合了强大计算能力和灵活交互性的数据分析工具,特别适合探索式数据分析。它不仅支持分步执行和实时查看每步结果,还提供了丰富的表格数据计算类库,简化复杂运算。与Excel相比,SPL在处理复杂逻辑时更加简洁高效;相较于SQL和Python,SPL具备更好的交互性和更直观的操作体验。通过SPL的XLL插件,用户可以在Excel环境中直接使用SPL的强大功能,充分发挥两者优势。SPL开源免费,是探索式数据分析的理想选择。
|
15天前
|
SQL JSON 数据可视化
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
1257 8
|
19天前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
22天前
|
分布式计算 大数据 数据处理
从Excel到大数据:别让工具限制你的思维!
从Excel到大数据:别让工具限制你的思维!
148 85
|
3月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
353 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
3月前
|
人工智能 自然语言处理 JavaScript
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
Univer 是一款开源的 AI 办公工具,支持 Word、Excel 等文档处理的全栈解决方案。它具有强大的功能、高度的可扩展性和跨平台兼容性,适用于个人和企业用户,能够显著提高工作效率。
240 8
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
|
3月前
|
DataWorks 数据挖掘 大数据
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
|
3月前
|
监控 数据可视化 数据挖掘
数据看板制作工具评测:这6款工具能如何提升企业的数据分析效率?
本文介绍了6款数据看板制作工具,包括板栗看板、Tableau、Power BI、Qlik Sense、Google Data Studio和Looker,从功能、适用场景等方面进行了详细对比,旨在帮助企业选择最合适的工具以实现高效的数据可视化和管理决策。

热门文章

最新文章