Pandas高级教程之:统计方法

简介: Pandas高级教程之:统计方法

目录



简介


数据分析中经常会用到很多统计类的方法,本文将会介绍Pandas中使用到的统计方法。


变动百分百


Series和DF都有一个pct_change() 方法用来计算数据变动的百分比。这个方法在填充NaN值的时候特别有用。


ser = pd.Series(np.random.randn(8))
ser.pct_change()
Out[45]: 
0         NaN
1   -1.264716
2    4.125006
3   -1.159092
4   -0.091292
5    4.837752
6   -1.182146
7   -8.721482
dtype: float64
ser
Out[46]: 
0   -0.950515
1    0.251617
2    1.289537
3   -0.205155
4   -0.186426
5   -1.088310
6    0.198231
7   -1.530635
dtype: float64


pct_change还有个periods参数,可以指定计算百分比的periods,也就是隔多少个元素来计算:


In [3]: df = pd.DataFrame(np.random.randn(10, 4))
In [4]: df.pct_change(periods=3)
Out[4]: 
          0         1         2         3
0       NaN       NaN       NaN       NaN
1       NaN       NaN       NaN       NaN
2       NaN       NaN       NaN       NaN
3 -0.218320 -1.054001  1.987147 -0.510183
4 -0.439121 -1.816454  0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -2.169058  0.036094 -0.067696
8  2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977  2.324558 -1.003744 -0.371806


Covariance协方差


Series.cov() 用来计算两个Series的协方差,会忽略掉NaN的数据。


In [5]: s1 = pd.Series(np.random.randn(1000))
In [6]: s2 = pd.Series(np.random.randn(1000))
In [7]: s1.cov(s2)
Out[7]: 0.0006801088174310875


同样的,DataFrame.cov() 会计算对应Series的协方差,也会忽略NaN的数据。


In [8]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])
In [9]: frame.cov()
Out[9]: 
          a         b         c         d         e
a  1.000882 -0.003177 -0.002698 -0.006889  0.031912
b -0.003177  1.024721  0.000191  0.009212  0.000857
c -0.002698  0.000191  0.950735 -0.031743 -0.005087
d -0.006889  0.009212 -0.031743  1.002983 -0.047952
e  0.031912  0.000857 -0.005087 -0.047952  1.042487


DataFrame.cov 带有一个min_periods参数,可以指定计算协方差的最小元素个数,以保证不会出现极值数据的情况。


In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])
In [11]: frame.loc[frame.index[:5], "a"] = np.nan
In [12]: frame.loc[frame.index[5:10], "b"] = np.nan
In [13]: frame.cov()
Out[13]: 
          a         b         c
a  1.123670 -0.412851  0.018169
b -0.412851  1.154141  0.305260
c  0.018169  0.305260  1.301149
In [14]: frame.cov(min_periods=12)
Out[14]: 
          a         b         c
a  1.123670       NaN  0.018169
b       NaN  1.154141  0.305260
c  0.018169  0.305260  1.301149


Correlation相关系数


corr() 方法可以用来计算相关系数。有三种相关系数的计算方法:


方法名 描述
pearson (default) 标准相关系数
kendall Kendall Tau相关系数
spearman 斯皮尔曼等级相关系数
n [15]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])
In [16]: frame.iloc[::2] = np.nan
# Series with Series
In [17]: frame["a"].corr(frame["b"])
Out[17]: 0.013479040400098775
In [18]: frame["a"].corr(frame["b"], method="spearman")
Out[18]: -0.007289885159540637
# Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]: 
          a         b         c         d         e
a  1.000000  0.013479 -0.049269 -0.042239 -0.028525
b  0.013479  1.000000 -0.020433 -0.011139  0.005654
c -0.049269 -0.020433  1.000000  0.018587 -0.054269
d -0.042239 -0.011139  0.018587  1.000000 -0.017060
e -0.028525  0.005654 -0.054269 -0.017060  1.000000

corr同样也支持 min_periods :

In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])
In [21]: frame.loc[frame.index[:5], "a"] = np.nan
In [22]: frame.loc[frame.index[5:10], "b"] = np.nan
In [23]: frame.corr()
Out[23]: 
          a         b         c
a  1.000000 -0.121111  0.069544
b -0.121111  1.000000  0.051742
c  0.069544  0.051742  1.000000
In [24]: frame.corr(min_periods=12)
Out[24]: 
          a         b         c
a  1.000000       NaN  0.069544
b       NaN  1.000000  0.051742
c  0.069544  0.051742  1.000000


corrwith 可以计算不同DF间的相关系数。


In [27]: index = ["a", "b", "c", "d", "e"]
In [28]: columns = ["one", "two", "three", "four"]
In [29]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns)
In [30]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
In [31]: df1.corrwith(df2)
Out[31]: 
one     -0.125501
two     -0.493244
three    0.344056
four     0.004183
dtype: float64
In [32]: df2.corrwith(df1, axis=1)
Out[32]: 
a   -0.675817
b    0.458296
c    0.190809
d   -0.186275
e         NaN
dtype: float64


rank等级


rank方法可以对Series中的数据进行排列等级。什么叫等级呢? 我们举个例子:


s = pd.Series(np.random.randn(5), index=list("abcde"))
s
Out[51]: 
a    0.336259
b    1.073116
c   -0.402291
d    0.624186
e   -0.422478
dtype: float64
s["d"] = s["b"]  # so there's a tie
s
Out[53]: 
a    0.336259
b    1.073116
c   -0.402291
d    1.073116
e   -0.422478
dtype: float64
s.rank()
Out[54]: 
a    3.0
b    4.5
c    2.0
d    4.5
e    1.0
dtype: float64


上面我们创建了一个Series,里面的数据从小到大排序 :


-0.422478 < -0.402291 <  0.336259 <  1.073116 < 1.073116


所以相应的rank就是 1 , 2 ,3 ,4 , 5.


因为我们有两个值是相同的,默认情况下会取两者的平均值,也就是 4.5.


除了 default_rank , 还可以指定max_rank ,这样每个值都是最大的5 。


还可以指定 NA_bottom , 表示对于NaN的数据也用来计算rank,并且会放在最底部,也就是最大值。


还可以指定 pct_rank , rank值是一个百分比值。


df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog',
...                                    'spider', 'snake'],
...                         'Number_legs': [4, 2, 4, 8, np.nan]})
>>> df
    Animal  Number_legs
0      cat          4.0
1  penguin          2.0
2      dog          4.0
3   spider          8.0
4    snake          NaN


df['default_rank'] = df['Number_legs'].rank()
>>> df['max_rank'] = df['Number_legs'].rank(method='max')
>>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom')
>>> df['pct_rank'] = df['Number_legs'].rank(pct=True)
>>> df
    Animal  Number_legs  default_rank  max_rank  NA_bottom  pct_rank
0      cat          4.0           2.5       3.0        2.5     0.625
1  penguin          2.0           1.0       1.0        1.0     0.250
2      dog          4.0           2.5       3.0        2.5     0.625
3   spider          8.0           4.0       4.0        4.0     1.000
4    snake          NaN           NaN       NaN        5.0       NaN


rank还可以指定按行 (axis=0) 或者 按列 (axis=1)来计算。


In [36]: df = pd.DataFrame(np.random.randn(10, 6))
In [37]: df[4] = df[2][:5]  # some ties
In [38]: df
Out[38]: 
          0         1         2         3         4         5
0 -0.904948 -1.163537 -1.457187  0.135463 -1.457187  0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2  0.401965  1.460840  1.256057  1.308127  1.256057  0.876004
3  0.205954  0.369552 -0.669304  0.038378 -0.669304  1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
5 -1.092970 -0.689246  0.908114  0.204848       NaN  0.463347
6  0.376892  0.959292  0.095572 -0.593740       NaN -0.069180
7 -1.002601  1.957794 -0.120708  0.094214       NaN -1.467422
8 -0.547231  0.664402 -0.519424 -0.073254       NaN -1.263544
9 -0.250277 -0.237428 -1.056443  0.419477       NaN  1.375064
In [39]: df.rank(1)
Out[39]: 
     0    1    2    3    4    5
0  4.0  3.0  1.5  5.0  1.5  6.0
1  2.0  6.0  4.5  1.0  4.5  3.0
2  1.0  6.0  3.5  5.0  3.5  2.0
3  4.0  5.0  1.5  3.0  1.5  6.0
4  5.0  3.0  1.5  4.0  1.5  6.0
5  1.0  2.0  5.0  3.0  NaN  4.0
6  4.0  5.0  3.0  1.0  NaN  2.0
7  2.0  5.0  3.0  4.0  NaN  1.0
8  2.0  5.0  3.0  4.0  NaN  1.0
9  2.0  3.0  1.0  4.0  NaN  5.0
相关文章
|
4月前
|
SQL 索引 Python
Pandas中DataFrame合并的几种方法
Pandas中DataFrame合并的几种方法
392 0
|
2月前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
67 2
|
2月前
|
Python
通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法
在金融分析领域,&quot;死叉&quot;指的是短期移动平均线(如MA5)下穿长期移动平均线(如MA10),而&quot;金叉&quot;则相反。本文介绍了一种利用Python编程语言,通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法。该方法首先计算两种移动平均线,接着确定它们的交叉点,最后检查并输出最近一次死叉及其后是否形成了金叉。此技术广泛应用于股市趋势分析。
69 2
|
3月前
|
存储 数据采集 数据处理
Pandas中批量转换object至float的高效方法
在数据分析中,常需将Pandas DataFrame中的object类型列转换为float类型以进行数值计算。本文介绍如何使用`pd.to_numeric`函数高效转换,并处理非数字值,包括用0或平均值填充NaN值的方法。
189 1
|
4月前
|
数据处理 Python
Pandas中的drop_duplicates()方法详解
Pandas中的drop_duplicates()方法详解
390 2
|
4月前
|
数据处理 Python
Pandas快速统计重复值的2种方法
Pandas快速统计重复值的2种方法
231 1
|
4月前
|
数据挖掘 Python
掌握Pandas中的相关性分析:corr()方法详解
掌握Pandas中的相关性分析:corr()方法详解
439 0
|
4月前
|
数据处理 索引 Python
Pandas中resample方法:轻松处理时间序列数据
Pandas中resample方法:轻松处理时间序列数据
118 0
|
4月前
|
SQL 数据采集 索引
聚焦Pandas数据合并:掌握merge方法
聚焦Pandas数据合并:掌握merge方法
57 0
|
4月前
|
数据采集 机器学习/深度学习 数据挖掘
Pandas中的变形大师:transform方法
Pandas中的变形大师:transform方法
58 0