ACL2022 | 关系抽取和NER等论文分类整理

简介: ACL2022 | 关系抽取和NER等论文分类整理

大家好,我是对白。


ACL 2022的paper list终于放出来了!!!


23cab1b705864451bb6b708b5fd9b3bd.png


本文汇总了ACL2022信息抽取方向的论文,包括但不限于通用信息抽取、命名实体识别、关系抽取、事件抽取、事件关系抽取、基于事件的观点挖掘等。


一、信息抽取



  1. Automatic Error Analysis for Document-level Information Extraction. Aliva Das, Xinya Du, Barry Wang, Kejian Shi, Jiayuan Gu, Thomas Porter, Claire Cardie


  1. BenchIE: A Framework for Multi-Faceted Fact-Based Open Information Extraction Evaluation. Kiril Gashteovski, Mingying Yu, Bhushan Kotnis, Carolin Lawrence, Mathias Niepert, Goran Glavaš


  1. FormNet: Structural Encoding beyond Sequential Modeling in Form Document Information Extraction. Chen-Yu Lee, Chun-Liang Li, Timothy Dozat, Vincent Perot, Guolong Su, Nan Hua, Joshua Ainslie, Renshen Wang, Yasuhisa Fujii, Tomas Pfister


  1. MILIE: Modular & Iterative Multilingual Open Information Extraction. Bhushan Kotnis, Kiril Gashteovski, Daniel Onoro Rubio, Ammar Shaker, Vanesa Rodriguez-Tembras, Makoto Takamoto, Mathias Niepert, Carolin Lawrence


  1. OIE@OIA: an Adaptable and Efficient Open Information Extraction Framework. Xin Wang, Minlong Peng, Mingming Sun, Ping Li


  1. Text-to-Table: A New Way of Information Extraction. Xueqing Wu, Jiacheng Zhang, Hang Li


  1. Unified Structure Generation for Universal Information Extraction. Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun, Hua Wu


二、命名实体识别



  1. An Unsupervised Multiple-Task and Multiple-Teacher Model for Cross-lingual Named Entity Recognition. Zhuoran Li, Chunming Hu, Xiaohui Guo, Junfan Chen, Wenyi Qin, Richong Zhang


  1. Bottom-Up Constituency Parsing and Nested Named Entity Recognition with Pointer Networks. Songlin Yang, Kewei Tu [paper]


  1. Boundary Smoothing for Named Entity Recognition Enwei Zhu, Jinpeng Li


  1. CONTaiNER: Few-Shot Named Entity Recognition via Contrastive Learning. Sarkar Snigdha Sarathi Das, Arzoo Katiyar, Rebecca J. Passonneau, Rui Zhang [paper]


  1. Distantly Supervised Named Entity Recognition via Confidence-Based Multi-Class Positive and Unlabeled Learning. Kang Zhou, Yuepei Li, Qi Li


  1. Few-Shot Class-Incremental Learning for Named Entity Recognition. Rui Wang, Tong Yu, Handong Zhao, Sungchul Kim, Subrata Mitra, Ruiyi Zhang, Ricardo Henao


  1. Few-shot Named Entity Recognition with Self-describing Networks. Jiawei Chen, Qing Liu, Hongyu Lin, Xianpei Han, Le Sun [paper]


  1. FiNER: Financial Numeric Entity Recognition for XBRL Tagging. Lefteris Loukas, Manos Fergadiotis, Ilias Chalkidis, Eirini Spyropoulou, Prodromos Malakasiotis, Ion Androutsopoulos, Georgios Paliouras [paper]


  1. MELM: Data Augmentation with Masked Entity Language Modeling for Low-Resource NER. Ran Zhou, Xin Li, Ruidan He, Lidong Bing, Erik Cambria, Luo Si, Chunyan Miao [paper]


  1. MINER: Improving Out-of-Vocabulary Named Entity Recognition from an Information Theoretic. Perspective Xiao Wang, Shihan Dou, Limao Xiong, Yicheng Zou, Qi Zhang, Tao Gui, Liang Qiao, Zhanzhan Cheng, Xuanjing Huang


  1. Nested Named Entity Recognition as Latent Lexicalized Constituency Parsing. Chao Lou, Songlin Yang, Kewei Tu [paper]


  1. Nested Named Entity Recognition with Span-level Graphs. Juncheng Wan, Dongyu Ru, Weinan Zhang, Yong Yu


  1. Parallel Instance Query Network for Named Entity Recognition. Yongliang Shen, Xiaobin Wang, Zeqi Tan, Guangwei Xu, Pengjun Xie, Fei Huang, Weiming Lu, Yueting Zhuang


  1. Cross-domain Named Entity Recognition via Graph Matching. Junhao Zheng, Haibin Chen, Qianli Ma


  1. Decomposed Meta-Learning for Few-Shot Named Entity Recognition. Tingting Ma, Huiqiang Jiang, Qianhui Wu, Tiejun Zhao, Chin-Yew Lin


  1. Extract-Select: A Span Selection Framework for Nested Named Entity Recognition with Generative Adversarial Training. Peixin Huang, Xiang Zhao, Minghao Hu, Yang Fang, Xinyi Li, Weidong Xiao


  1. Extracting Person Names from User Generated Text: Named-Entity Recognition for Combating Human Trafficking. Yifei Li, Pratheeksha Nair, Kellin Pelrine, Reihaneh Rabbany


  1. Fusing Heterogeneous Factors with Triaffine Mechanism for Nested Named Entity Recognition. Zheng Yuan, Chuanqi Tan, Songfang Huang, Fei Huang


  1. Label Semantics for Few Shot Named Entity Recognition. Jie Ma, Miguel Ballesteros, Srikanth Doss, RISHITA ANUBHAI, Sunil Mallya, Yaser Al-Onaizan, Dan Roth


  1. Learn and Review: Enhancing Continual Named Entity Recognition via Reviewing Synthetic Samples. Yu Xia, Quan Wang, Yajuan Lyu, Yong Zhu, Wenhao Wu, Sujian Li, Dai Dai


  1. Thai Nested Named Entity Recognition Corpus. Weerayut Buaphet, Can Udomcharoenchaikit, Peerat Limkonchotiwat, Attapol Rutherford, Sarana Nutanong


  1. Towards Few-shot Entity Recognition in Document Images: A Label-aware Sequence-to-Sequence Framework. Zilong Wang, Jingbo Shang


  1. Leveraging Expert Guided Adversarial Augmentation For Improving Generalization in Named Entity Recognition. Aaron Reich, Jiaao Chen, Aastha Agrawal, Yanzhe Zhang, Diyi Yang


三、关系抽取



  1. Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction. Zhanming Jie, Jierui Li, Wei Lu


  1. Packed Levitated Marker for Entity and Relation Extraction. Deming Ye, Yankai Lin, Peng Li, Maosong Sun


  1. Pre-training to Match for Unified Low-shot Relation Extraction. Fangchao Liu, Hongyu Lin, Xianpei Han, Boxi Cao, Le Sun


  1. DiS-ReX: A Multilingual Dataset for Distantly Supervised Relation Extraction. Abhyuday Bhartiya, Kartikeya Badola, Mausam


  1. PARE: A Simple and Strong Baseline for Monolingual and Multilingual Distantly Supervised Relation Extraction. Vipul Kumar Rathore, Kartikeya Badola, Parag Singla, Mausam


  1. Consistent Representation Learning for Continual Relation Extraction. Kang Zhao, Hua Xu, Jiangong Yang, Kai Gao


  1. Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation. Qingyu Tan, Ruidan He, Lidong Bing, Hwee Tou Ng


  1. Eider: Empowering Document-level Relation Extraction with Efficient Evidence Extraction and Inference-stage Fusion. Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, Jiawei Han


  1. Encoding and Fusing Semantic Connection and Linguistic Evidence for Implicit Discourse Relation Recognition. Wei Xiang, Bang Wang, Lu Dai, Yijun Mo


  1. HiCLRE: A Hierarchical Contrastive Learning Framework for Distantly Supervised Relation Extraction. Dongyang Li, Taolin Zhang, Nan Hu, Chengyu Wang, Xiaofeng He


  1. Improving Relation Extraction through Syntax-induced Pre-training with Dependency Masking. Yuanhe Tian, Yan Song, Fei Xia


  1. RelationPrompt: Leveraging Prompts to Generate Synthetic Data for Zero-Shot Relation Triplet Extraction. Yew Ken Chia, Lidong Bing, Soujanya Poria, Luo Si


  1. A Simple yet Effective Relation Information Guided Approach for Few-Shot Relation Extraction. Yang Liu, Jinpeng Hu, Xiang Wan, Tsung-Hui Chang


  1. Continual Few-shot Relation Learning via Embedding Space Regularization and Data Augmentation. Chengwei Qin, Shafiq Joty [paper]


四、事件抽取



  1. ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification. Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long, Daxin Jiang [paper]


  1. Dynamic Prefix-Tuning for Generative Template-based Event Extraction. Xiao Liu, Heyan Huang, Ge Shi, Bo Wang


  1. Legal Judgment Prediction via Event Extraction with Constraints. Yi Feng, Chuanyi Li, Vincent Ng


  1. Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction. Kuan-Hao Huang, I-Hung Hsu, Prem Natarajan, Kai-Wei Chang, Nanyun Peng [paper]


  1. Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction. Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi Chen, Kun Wang, Jing Shao [paper]


  1. Saliency as Evidence: Event Detection with Trigger Saliency Attribution. Jian Liu, Yufeng Chen, Jinan Xu


  1. A Graph Enhanced BERT Model for Event Prediction. Li Du, Xiao Ding, Yue Zang, ting liu, Bing Qin


  1. Document-Level Event Argument Extraction via Optimal Transport. Amir Pouran Ben Veyseh, Minh Van Nguyen, Franck Dernoncourt, Bonan Min, Thien Huu Nguyen


  1. LEVEN: A Large-Scale Chinese Legal Event Detection Dataset. Feng Yao, Chaojun Xiao, Xiaozhi Wang, Zhiyuan Liu, Lei Hou, Cunchao Tu, Juanzi Li, Yun Liu, Weixing Shen, Maosong Sun [paper]


  1. Query and Extract: Refining Event Extraction as Type-oriented Binary Decoding. Sijia Wang, Mo Yu, Shiyu Chang, Lichao Sun, Lifu Huang [paper]


五、事件关系抽取



  1. Event-Event Relation Extraction using Probabilistic Box Embedding. EunJeong Hwang, Jay-Yoon Lee, Tianyi Yang, Dhruvesh Patel, Dongxu Zhang, Andrew McCallum


六、基于事件的观点挖掘



  1. ECO v1: Towards Event-Centric Opinion Mining. Ruoxi Xu, Hongyu Lin, Meng Liao, Xianpei Han, Jin Xu, Wei Tan, Yingfei Sun, Le Sun [paper]


相关文章
|
Ubuntu Linux 网络安全
Linux服务器上安装软件
Linux服务器上安装软件
312 2
|
9月前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
10484 46
|
机器学习/深度学习 自然语言处理 算法
人类偏好对齐训练技术解析
大型语言模型(LLMs)通过在大量文本数据集上进行无监督预训练,获得丰富的语言模式和知识,这一阶段训练后的模型被称为base model。
|
11月前
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
609 2
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
876 11
|
机器学习/深度学习 存储 算法
OpenAI Gym 中级教程——强化学习实践项目
OpenAI Gym 中级教程——强化学习实践项目
284 1
|
机器学习/深度学习 人工智能 自然语言处理
【论文精读】AAAI 2022 - Unified Named Entity Recognition as Word-Word Relation Classification
到目前为止,命名实体识别(NER)已经涉及三种主要类型,包括扁平、重叠(又名嵌套)和不连续NER,它们大多是单独研究的。
437 0
【论文精读】AAAI 2022 - Unified Named Entity Recognition as Word-Word Relation Classification
|
机器学习/深度学习 算法 TensorFlow
OpenAI Gym 中级教程——多智能体系统
OpenAI Gym 中级教程——多智能体系统
910 0
|
机器学习/深度学习 弹性计算 数据处理
阿里云gpu服务器简介和如何使用
阿里云GPU服务器是基于GPU加速计算的云计算服务,主要用于大规模并行计算、深度学习、图形渲染、图像处理、金融建模等领域。阿里云GPU服务器可以提供高效、可靠、稳定的服务,帮助用户降低计算成本,提高计算效率,实现更快速的数据处理和模型训练。
1754 0
|
机器学习/深度学习 存储 人工智能
Zero-Shot, One-Shot, and Few-Shot Learning概念介绍
Zero-Shot, One-Shot, and Few-Shot Learning概念介绍
8454 0