【小家java】使用volatile关键字来实现内存可见性、实现轻量级锁(下)

简介: 【小家java】使用volatile关键字来实现内存可见性、实现轻量级锁(下)

volatile还有一个特性:禁止指令重排序优化。


重排序是指编译器和处理器为了优化程序性能而对指令序列进行排序的一种手段。但是重排序也需要遵守一定规则:


1.重排序操作不会对存在数据依赖关系的操作进行重排序。


比如:a=1;b=a; 这个指令序列,由于第二个操作依赖于第一个操作,所以在编译时和处理器运行时这两个操作不会被重排序。


2.重排序是为了优化性能,但是不管怎么重排序,单线程下程序的执行结果不能被改变


比如:a=1;b=2;c=a+b这三个操作,第一步(a=1)和第二步(b=2)由于不存在数据依赖关系,所以可能会发生重排序,但是c=a+b这个操作是不会被重排序的,因为需要保证最终的结果一定是c=a+b=3。


重排序在单线程模式下是一定会保证最终结果的正确性,但是在多线程环境下,问题就出来了,来开个例子,我们对第一个TestVolatile的例子稍稍改进,再增加个共享变量a


public class TestVolatile {
    int a = 1;
    boolean status = false;
    /**
     * 状态切换为true
     */
    public void changeStatus(){
        a = 2;//1
        status = true;//2
    }
    /**
     * 若状态为true,则running。
     */
    public void run(){
        if(status){//3
            int b = a+1;//4
            System.out.println(b);
        }
    }
}

假设线程A执行changeStatus后,线程B执行run,我们能保证在4处,b一定等于3么?


答案依然是无法保证!也有可能b仍然为2。上面我们提到过,为了提供程序并行度,编译器和处理器可能会对指令进行重排序,而上例中的1和2由于不存在数据依赖关系,则有可能会被重排序,先执行status=true再执行a=2。而此时线程B会顺利到达4处,而线程A中a=2这个操作还未被执行,所以b=a+1的结果也有可能依然等于2。


使用volatile关键字修饰共享变量便可以禁止这种重排序。若用volatile修饰共享变量,在编译时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序


volatile禁止指令重排序也有一些规则,简单列举一下:


1.当第二个操作是voaltile写时,无论第一个操作是什么,都不能进行重排序


2.当地一个操作是volatile读时,不管第二个操作是什么,都不能进行重排序


3.当第一个操作是volatile写时,第二个操作是volatile读时,不能进行重排序


简单总结下,volatile是一种轻量级的同步机制,它主要有两个特性:一是保证共享变量对所有线程的可见性;二是禁止指令重排序优化。同时需要注意的是,volatile对于单个的共享变量的读/写具有原子性,但是像num++这种复合操作,volatile无法保证其原子性,当然文中也提出了解决方案,就是使用并发包中的原子操作类,通过循环CAS地方式来保证num++操作的原子性。


当一个共享变量被volatile修饰时,它会保证修改的值立即被更新到主存

内存可见性:通俗来说就是,线程A对一个volatile变量的修改,对于其它线程来说是可见的,即线程每次获取volatile变量的值都是最新的。


使用volatile必须满足两个条件:


1、对变量的写操作不依赖当前值,如多线程下执行a++,是无法通过volatile保证结果准确性的;

 2、该变量没有包含在具有其它变量的不变式中,这句话有点拗口,看代码比较直观。


public class NumberRange {
  private volatile int lower = 0;
  private volatile int upper = 10;
  public int getLower() { return lower; }
  public int getUpper() { return upper; }
  public void setLower(int value) {
  if (value > upper)
  throw new IllegalArgumentException(...);
  lower = value;
  }
  public void setUpper(int value) {
  if (value < lower)
  throw new IllegalArgumentException(...);
  upper = value;
  }
  }


上述代码中,上下界初始化分别为0和10,假设线程A和B在某一时刻同时执行了setLower(8)和setUpper(5),且都通过了不变式的检查,设置了一个无效范围(8, 5),所以在这种场景下,需要通过sychronize保证方法setLower和setUpper在每一时刻只有一个线程能够执行。


下面是我们在项目中经常会用到volatile关键字的两个场景:


1、状态标记量


在高并发的场景中,通过一个boolean类型的变量isopen,控制代码是否走促销逻辑,该如何实现?


public class ServerHandler {
  private volatile isopen;
  public void run() {
  if (isopen) {
  //促销逻辑
  } else {
  //正常逻辑
  }
  }
  public void setIsopen(boolean isopen) {
  this.isopen = isopen
  }
  }


用户的请求线程执行run方法,如果需要开启促销活动,可以通过后台设置,具体实现可以发送一个请求,调用setIsopen方法并设置isopen为true,由于isopen是volatile修饰的,所以一经修改,其他线程都可以拿到isopen的最新值,用户请求就可以执行促销逻辑了。

2、double check:双重校验锁


单例模式的一种实现方式,但很多人会忽略volatile关键字,因为没有该关键字,程序也可以很好的运行,只不过代码的稳定性总不是100%,说不定在未来的某个时刻,隐藏的bug就出来了。


class Singleton {
  private volatile static Singleton instance;
  public static Singleton getInstance() {
  if (instance == null) {
  syschronized(Singleton.class) {
  if (instance == null) {
  instance = new Singleton();
  }
  }
  }
  return instance;
  }
  }

不过在众多单例模式的实现中,我比较推荐懒加载的优雅写法Initialization on Demand Holder(IODH)。


public class Singleton {
  static class SingletonHolder {
  static Singleton instance = new Singleton();
  }
  public static Singleton getInstance(){
  return SingletonHolder.instance;
  }
  }


在java虚拟机的内存模型中,有主内存和工作内存的概念,每个线程对应一个工作内存,并共享主内存的数据,下面看看操作普通变量和volatile变量有什么不同:


1、对于普通变量:读操作会优先读取工作内存的数据,如果工作内存中不存在,则从主内存中拷贝一份数据到工作内存中;写操作只会修改工作内存的副本数据,这种情况下,其它线程就无法读取变量的最新值。


2、对于volatile变量,读操作时JMM会把工作内存中对应的值设为无效,要求线程从主内存中读取数据;写操作时JMM会把工作内存中对应的数据刷新到主内存中,这种情况下,其它线程就可以读取变量的最新值。


volatile变量的内存可见性是基于内存屏障(Memory Barrier)实现的,什么是内存屏障?内存屏障,又称内存栅栏,是一个CPU指令。在程序运行时,为了提高执行性能,编译器和处理器会对指令进行重排序,JMM为了保证在不同的编译器和CPU上有相同的结果,通过插入特定类型的内存屏障来禁止特定类型的编译器重排序和处理器重排序,插入一条内存屏障会告诉编译器和CPU:不管什么指令都不能和这条Memory Barrier指令重排序。


class Singleton {
  private volatile static Singleton instance;
  private int a;
  private int b;
  private int b;
  public static Singleton getInstance() {
  if (instance == null) {
  syschronized(Singleton.class) {
  if (instance == null) {
  a = 1; // 1
  b = 2; // 2
  instance = new Singleton(); // 3
  c = a + b; // 4
  }
  }
  }
  return instance;
  }
  }

1、如果变量instance没有volatile修饰,语句1、2、3可以随意的进行重排序执行,即指令执行过程可能是3214或1324。


2、如果是volatile修饰的变量instance,会在语句3的前后各插入一个内存屏障。


通过观察volatile变量和普通变量所生成的汇编代码可以发现,操作volatile变量会多出一个lock前缀指令:

java代码:


/

instance = new Singleton();


汇编代码:


0x01a3de1d: movb $0x0,0x1104800(%esi);
 0x01a3de24: **lock** addl $0x0,(%esp);


这个lock前缀指令相当于上述的内存屏障,提供了以下保证:


1、将当前CPU缓存行的数据写回到主内存;


2、这个写回内存的操作会导致在其它CPU里缓存了该内存地址的数据无效。


CPU为了提高处理性能,并不直接和内存进行通信,而是将内存的数据读取到内部缓存(L1,L2)再进行操作,但操作完并不能确定何时写回到内存,如果对volatile变量进行写操作,当CPU执行到Lock前缀指令时,会将这个变量所在缓存行的数据写回到内存,不过还是存在一个问题,就算内存的数据是最新的,其它CPU缓存的还是旧值,所以为了保证各个CPU的缓存一致性,每个CPU通过嗅探在总线上传播的数据来检查自己缓存的数据有效性,当发现自己缓存行对应的内存地址的数据被修改,就会将该缓存行设置成无效状态,当CPU读取该变量时,发现所在的缓存行被设置为无效,就会重新从内存中读取数据到缓存中。


相关文章
|
4月前
|
存储 缓存 Java
【高薪程序员必看】万字长文拆解Java并发编程!(5):深入理解JMM:Java内存模型的三大特性与volatile底层原理
JMM,Java Memory Model,Java内存模型,定义了主内存,工作内存,确保Java在不同平台上的正确运行主内存Main Memory:所有线程共享的内存区域,所有的变量都存储在主存中工作内存Working Memory:每个线程拥有自己的工作内存,用于保存变量的副本.线程执行过程中先将主内存中的变量读到工作内存中,对变量进行操作之后再将变量写入主内存,jvm概念说明主内存所有线程共享的内存区域,存储原始变量(堆内存中的对象实例和静态变量)工作内存。
143 0
|
6月前
|
存储 架构师 安全
深入理解Java锁升级:无锁 → 偏向锁 → 轻量级锁 → 重量级锁(图解+史上最全)
锁状态bits1bit是否是偏向锁2bit锁标志位无锁状态对象的hashCode001偏向锁线程ID101轻量级锁指向栈中锁记录的指针000重量级锁指向互斥量的指针010尼恩提示,讲完 如减少锁粒度、锁粗化、关闭偏向锁(-XX:-UseBiasedLocking)等优化手段 , 可以得到 120分了。如减少锁粒度、锁粗化、关闭偏向锁(-XX:-UseBiasedLocking)等‌。JVM锁的膨胀、锁的内存结构变化相关的面试题,是非常常见的面试题。也是核心面试题。
深入理解Java锁升级:无锁 → 偏向锁 → 轻量级锁 → 重量级锁(图解+史上最全)
|
6月前
|
设计模式 存储 SQL
【Java并发】【volatile】适合初学者体质的volatile
当你阅读dalao的框架源码的时候,你是否会见到这样一个关键字 - - - volatie,诶,你是否会好奇,为什么要加它?加了它有什么作用?
181 14
【Java并发】【volatile】适合初学者体质的volatile
|
6月前
|
存储 缓存 安全
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是写出高端的CRUD应用。2025年,我正在沉淀自己,博客更新速度也在加快。在这里,我会分享关于Java并发编程的深入理解,尤其是volatile关键字的底层原理。 本文将带你深入了解Java内存模型(JMM),解释volatile如何通过内存屏障和缓存一致性协议确保可见性和有序性,同时探讨其局限性及优化方案。欢迎订阅专栏《在2B工作中寻求并发是否搞错了什么》,一起探索并发编程的奥秘! 关注我,点赞、收藏、评论,跟上更新节奏,让我们共同进步!
298 8
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
|
7月前
|
缓存 安全 Java
Volatile关键字与Java原子性的迷宫之旅
通过合理使用 `volatile`和原子操作,可以在提升程序性能的同时,确保程序的正确性和线程安全性。希望本文能帮助您更好地理解和应用这些并发编程中的关键概念。
162 21
|
5月前
|
存储 安全 Java
深入理解 Java 中的 instanceof 关键字
本文深入解析了 Java 中的 `instanceof` 关键字,探讨其在类型判断中的作用。作为二元操作符,`instanceof` 可用于检查对象是否为某类实例或实现特定接口,避免类型转换异常 (`ClassCastException`)。文章通过多态性下的类型判断、安全类型转换、接口实现检测及集合元素类型判定等实际应用场景,展示了 `instanceof` 的强大功能。掌握该关键字可提高代码健壮性,确保运行时类型安全。
342 0
|
6月前
|
Java C语言
课时8:Java程序基本概念(标识符与关键字)
课时8介绍Java程序中的标识符与关键字。标识符由字母、数字、下划线和美元符号组成,不能以数字开头且不能使用Java保留字。建议使用有意义的命名,如student_name、age。关键字是特殊标记,如蓝色字体所示。未使用的关键字有goto、const;特殊单词null、true、false不算关键字。JDK1.4后新增assert,JDK1.5后新增enum。
104 4
时间轮-Java实现篇
在前面的文章《[时间轮-理论篇](https://developer.aliyun.com/article/910513)》讲了时间轮的一些理论知识,然后根据理论知识。我们自己来实现一个简单的时间轮。
|
2月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
125 0