【小家java】HashMap原理、TreeMap、ConcurrentHashMap的原理、性能、安全方面大解析-----看这一篇就够了(下)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【小家java】HashMap原理、TreeMap、ConcurrentHashMap的原理、性能、安全方面大解析-----看这一篇就够了(下)

containsValue() 的作用是判断HashMap是否包含“值为value”的元素。


public boolean containsValue(Object value) {
    // 若“value为null”,则调用containsNullValue()查找
    if (value == null)
        return containsNullValue();
    // 若“value不为null”,则查找HashMap中是否有值为value的节点。
    Entry[] tab = table;
    for (int i = 0; i < tab.length ; i++)
        for (Entry e = tab[i] ; e != null ; e = e.next)
            if (value.equals(e.value))
                return true;
    return false;
}


HashMap实现了Cloneable接口,即实现了clone()方法。


clone()方法的作用很简单,就是克隆一个HashMap对象并返回。


// 克隆一个HashMap,并返回Object对象
public Object clone() {
    HashMap<K,V> result = null;
    try {
        result = (HashMap<K,V>)super.clone();
    } catch (CloneNotSupportedException e) {
        // assert false;
    }
    result.table = new Entry[table.length];
    result.entrySet = null;
    result.modCount = 0;
    result.size = 0;
    result.init();
    // 调用putAllForCreate()将全部元素添加到HashMap中
    result.putAllForCreate(this);
    return result;
}


关于HashMap在Java8中的实现,我推荐参考这篇文章:HashMap在java8中的原理


HashTable的原理


基本和HashMap一样,只是它所有的方法都是被synchronized修饰的,包括toString()方法,所以效率是很低的,基本不会再使用它了。


TreeMap的原理

TreeMap的实现是红黑树算法的实现,所以需要了解TreeMap的原理,需要了解红黑树的原理,这里推荐红黑树原理

所以了解TreeMap的put、get方法的原理,其实都是需要深入了解红黑树对节点的处理。


LinkedHashMap 的原理


HashMap和双向链表合二为一即是LinkedHashMap。所谓LinkedHashMap,其落脚点在HashMap,因此更准确地说,它是一个将所有Entry节点链入一个双向链表的HashMap。由于LinkedHashMap是HashMap的子类,所以LinkedHashMap自然会拥有HashMap的所有特性。比如,LinkedHashMap的元素存取过程基本与HashMap基本类似,只是在细节实现上稍有不同。当然,这是由LinkedHashMap本身的特性所决定的,因为它额外维护了一个双向链表用于保持迭代顺序。此外,LinkedHashMap可以很好的支持LRU算法。


虽然LinkedHashMap增加了时间和空间上的开销,但是它通过维护一个额外的双向链表保证了迭代顺序。特别地,该迭代顺序可以是插入顺序,也可以是访问顺序。


更具体的解释,我给导向到这里:Map 综述(二):彻头彻尾理解 LinkedHashMap


1.HashMap 是基于“拉链法”实现的散列表。一般用于单线程程序中。

2.Hashtable 也是基于“拉链法”实现的散列表。它一般用于多线程程序中。

3.WeakHashMap 也是基于“拉链法”实现的散列表,它一般也用于单线程程序中。相比HashMap,WeakHashMap中的键是“弱键”,当“弱键”被GC回收时,它对应的键值对也会被从WeakHashMap中删除;而HashMap中的键是强键。

4. TreeMap 是有序的散列表,它是通过红黑树实现的。它一般用于单线程中存储有序的映射。

5. LinkedHashMap:存储需要保证插入顺序的单线程环境中


HashMap为什么线程不安全?有什么影响?


一直以来都知道HashMap是线程不安全的,但是到底为什么线程不安全,在多线程操作情况下什么时候线程不安全?


让我们先来了解一下HashMap的底层存储结构,HashMap底层是一个Entry数组,一旦发生Hash冲突的的时候,HashMap采用拉链法解决碰撞冲突,Entry内部的变量:


final Object key;  
Object value;  
Entry next;  
int hash; 

通过Entry内部的next变量可以知道使用的是链表,这时候我们可以知道,如果多个线程,在某一时刻同时操作HashMap并执行put操作,而有大于两个key的hash值相同,如图中a1、a2,这个时候需要解决碰撞冲突,而解决冲突的办法上面已经说过,对于链表的结构在这里不再赘述,暂且不讨论是从链表头部插入还是从尾部初入,这个时候两个线程如果恰好都取到了对应位置的头结点e1,而最终的结果可想而知,a1、a2两个数据中势必会有一个会丢失,如图所示:


image.png


看看put方法:

public Object put(Object obj, Object obj1)  
    {  
        if(table == EMPTY_TABLE)  
            inflateTable(threshold);  
        if(obj == null)  
            return putForNullKey(obj1);  
        int i = hash(obj);  
        int j = indexFor(i, table.length);  
        for(Entry entry = table[j]; entry != null; entry = entry.next)  
        {  
            Object obj2;  
            if(entry.hash == i && ((obj2 = entry.key) == obj || obj.equals(obj2)))  
            {  
                Object obj3 = entry.value;  
                entry.value = obj1;  
                entry.recordAccess(this);  
                return obj3;  
            }  
        }  
        modCount++;  
        addEntry(i, obj, obj1, j);  
        return null;  
    }  


put方法不是同步的,同时调用了addEntry方法。addEntry方法依然不是同步的,所以导致了线程不安全出现伤处问题,其他类似操作不再说明,源码一看便知,下面主要说一下另一个非常重要的知识点,同样也是HashMap非线程安全的原因,我们知道在HashMap存在扩容的情况,对应的方法为HashMap中的resize方法:

void resize(int i)  
    {  
        Entry aentry[] = table;  
        int j = aentry.length;  
        if(j == 1073741824)  
        {  
            threshold = 2147483647;  
            return;  
        } else  
        {  
            Entry aentry1[] = new Entry[i];  
            transfer(aentry1, initHashSeedAsNeeded(i));  
            table = aentry1;  
            threshold = (int)Math.min((float)i * loadFactor, 1.073742E+009F);  
            return;  
        }  
    }  


可以看到扩容方法也不是同步的,通过代码我们知道在扩容过程中,会新生成一个新的容量的数组,然后对原数组的所有键值对重新进行计算和写入新的数组,之后指向新生成的数组。

**当多个线程同时检测到总数量超过门限值的时候就会同时调用resize操作**,各自生成新的数组并rehash后赋给该map底层的数组table,结果最终只有最后一个线程生成的新数组被赋给table变量,其他线程的均会丢失。而且当某些线程已经完成赋值而其他线程刚开始的时候,就会用已经被赋值的table作为原始数组,这样也会有问题。


使用线程安全的Map


HashTable或者Collections.synchronizedMap


但是这两位选手都有一个共同的问题:性能。因为不管是读还是写操作,他们都会给整个集合上锁,导致同一时间的其他操作被阻塞。

虽然HashTable和Collections.synchronizedMap解决了HashMap的线程不安全的问题,但是带来了运行效率不佳的问题。

基于以上所述,兼顾了线程安全和运行效率的ConcurrentHashMap就出现了。


Collections.synchronizedMap()和Hashtable一样,实现上在调用map所有方法时,都对整个map进行同步.


ConcurrentHashMap:实现线程安全的HashMap


ConcurrentHashMap与HashMap相比,最关键的是要理解一个概念:segment。

Segment其实就是一个Hashmap 。Segment也包含一个HashEntry数组,数组中的每一个HashEntry既是一个键值对,也是一个链表的头节点。

Segment对象在ConcurrentHashMap集合中有2的N次方个,共同保存在一个名为segments的数组当中。(类比HashMap来理解Segment就好)因此ConcurrentHashMap的结构为:


image.png



换言之,ConcurrentHashMap是一个双层哈希表。在一个总的哈希表下面,有若干个子哈希表。(这样的双层结构,类似于数据库水平拆分来理解)ConcurrentHashMap如此的设计,优势主要在于: 每个segment的读写是高度自治的,segment之间互不影响。这称之为**“锁分段技术”**;

看一下并发情况下的ConcurrentHashMap:

– 情景一:不同segment的并发写入


image.pngimage.pngimage.png

image.png



不同的Segment是可以并发执行put操作的


– 情景二:同一segment的并发写入


image.png


因为segment的写入是上锁的,因此对 同一segment的并发写入会被阻塞;


– 情景三:同一segment的一写一读

image.png


同一segment的写和读是可以并发执行的;


下面简要说说读写的过程:

get:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.再次通过hash值,定位到Segment当中数组的具体位置。

put:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.获取可重入锁

4.再次通过hash值,定位到Segment当中数组的具体位置。

5.插入或覆盖HashEntry对象。

6.释放锁。


抛出一个问题:每一个segment各自持有锁,那么在调用size()方法的时候(size()在实际开发大量使用),怎么保持一致性呢?


Size方法的目的是统计ConcurrentHashMap的总元素数量, 肯定要把每个segment内部的元素数量都加起来。


那么假设一种情况,在统计segment元素数量的过程中,在统计结束前,已统计过的segment插入了新的元素,size()返回的数量就会出现不一致的问题。

为解决这个问题,ConcurrentHashMap的Size()方法是通过一个嵌套循环解决的,大体过程如下:


1.遍历所有的Segment。

2.把Segment的元素数量累加起来。

3.把Segment的修改次数累加起来。

4.判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。

5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。

6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。

7.释放锁,统计结束。


为了不锁所有segment,首先乐观地假设size过程中不会有修改。当尝试一定次数,才无奈转悲观,锁住所有segment以保证一致性。

以上都是基于Java1.7的ConcurrentHashMap原理和代码;ConcurrentHashMap在对Key求Hash值的时候进行了两次Hash,目的是为了实现Segment均匀分布。


jdk1.7中采用Segment + HashEntry的方式进行实现,结构如下:


image.png



1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,结构如下:


image.png


只有在执行第一次put方法时才会调用initTable()初始化Node数组,实现如下:


private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}


1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount,通过累加baseCount和CounterCell数组中的数量,即可得到元素的总个数;


HashTable使用一把锁处理并发问题,当有多个线程访问时,需要多个线程竞争一把锁,导致阻塞


相关文章
|
3天前
|
传感器 监控 Java
Java代码结构解析:类、方法、主函数(1分钟解剖室)
### Java代码结构简介 掌握Java代码结构如同拥有程序世界的建筑蓝图,类、方法和主函数构成“黄金三角”。类是独立的容器,承载成员变量和方法;方法实现特定功能,参数控制输入环境;主函数是程序入口。常见错误包括类名与文件名不匹配、忘记static修饰符和花括号未闭合。通过实战案例学习电商系统、游戏角色控制和物联网设备监控,理解类的作用、方法类型和主函数任务,避免典型错误,逐步提升编程能力。 **脑图速记法**:类如太空站,方法即舱段;main是发射台,static不能换;文件名对仗,括号要成双;参数是坐标,void不返航。
17 5
|
24天前
|
安全 Java 开发者
【JAVA】封装多线程原理
Java 中的多线程封装旨在简化使用、提高安全性和增强可维护性。通过抽象和隐藏底层细节,提供简洁接口。常见封装方式包括基于 Runnable 和 Callable 接口的任务封装,以及线程池的封装。Runnable 适用于无返回值任务,Callable 支持有返回值任务。线程池(如 ExecutorService)则用于管理和复用线程,减少性能开销。示例代码展示了如何实现这些封装,使多线程编程更加高效和安全。
|
24天前
|
存储 算法 Java
【JAVA】生成accessToken原理
在Java中,生成accessToken用于身份验证和授权,确保合法用户访问受保护资源。流程包括:1. 身份验证(如用户名密码、OAuth 2.0);2. 生成唯一且安全的令牌;3. 设置令牌有效期并存储;4. 客户端传递令牌,服务器验证其有效性。常见场景为OAuth 2.0协议,涉及客户端注册、用户授权、获取授权码和换取accessToken。示例代码展示了使用Apache HttpClient库模拟OAuth 2.0获取accessToken的过程。
|
25天前
|
人工智能 监控 安全
Java智慧工地(源码):数字化管理提升施工安全与质量
随着科技的发展,智慧工地已成为建筑行业转型升级的重要手段。依托智能感知设备和云物互联技术,智慧工地为工程管理带来了革命性的变革,实现了项目管理的简单化、远程化和智能化。
37 4
|
24天前
|
XML JSON Java
Java中Log级别和解析
日志级别定义了日志信息的重要程度,从低到高依次为:TRACE(详细调试)、DEBUG(开发调试)、INFO(一般信息)、WARN(潜在问题)、ERROR(错误信息)和FATAL(严重错误)。开发人员可根据需要设置不同的日志级别,以控制日志输出量,避免影响性能或干扰问题排查。日志框架如Log4j 2由Logger、Appender和Layout组成,通过配置文件指定日志级别、输出目标和格式。
|
2月前
|
存储 Java 计算机视觉
Java二维数组的使用技巧与实例解析
本文详细介绍了Java中二维数组的使用方法
56 15
|
15天前
|
Java API 数据处理
深潜数据海洋:Java文件读写全面解析与实战指南
通过本文的详细解析与实战示例,您可以系统地掌握Java中各种文件读写操作,从基本的读写到高效的NIO操作,再到文件复制、移动和删除。希望这些内容能够帮助您在实际项目中处理文件数据,提高开发效率和代码质量。
19 0
|
4月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
141 2
|
2天前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
8天前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇

推荐镜像

更多