推荐系统技术演进趋势:召回->排序->重排(一)

简介: 推荐系统技术演进趋势:召回->排序->重排(一)

39d41b451003a22b13b11fc830bbda20.png


大家好,我是对白。


推荐系统技术,总体而言,与 NLP 和图像领域比,发展速度不算太快。不过最近两年,由于深度学习等一些新技术的引入,总体还是表现出了一些比较明显的技术发展趋势。


在写技术趋势前,照例还是对推荐系统的宏观架构做个简单说明,以免读者迷失在技术细节中。


6004385db60a8ac4f79b2cf41f1181c5.png


实际的工业推荐系统,如果粗分的化,经常讲的有两个阶段。


首先是召回,主要根据用户部分特征,从海量的物品库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节,排序环节可以融入较多特征,使用复杂模型,来精准地做个性化推荐。召回强调快,排序强调准。当然,这是传统角度看推荐这个事情。


但是,如果我们更细致地看实用的推荐系统,一般会有四个环节,如下图所示:


7d77fa9e15322165685859e9d33fc074.png


四个环节分别是:召回、粗排、精排和重排。


召回目的如上所述;有时候因为每个用户召回环节返回的物品数量还是太多,怕排序环节速度跟不上,所以可以在召回和精排之间加入一个粗排环节,通过少量用户和物品特征,简单模型,来对召回的结果进行个粗略的排序,在保证一定精准的前提下,进一步减少往后传送的物品数量,粗排往往是可选的,可用可不同,跟场景有关。


之后是精排环节,使用你能想到的任何特征,可以上你能承受速度极限的复杂模型,尽量精准地对物品进行个性化排序。


排序完成后,传给重排环节,传统地看,这里往往会上各种技术及业务策略,比如去已读、去重、打散、多样性保证、固定类型物品插入等等,主要是技术产品策略主导或者为了改进用户体验的。


那么,每个环节,从技术发展的角度看,都各自有怎样的发展趋势呢?下面我们分头说明。


——召回技术演进趋势——



推荐系统的召回阶段是很关键的一个环节,但是客观的说,传统地看,这个环节,技术含量是不太高的,偏向策略型导向,往往灵机一动,就能想到一个策略,增加一路新的召回。你在网上搜,发现讲推荐模型的,95%是讲排序阶段的模型,讲召回的别说模型,讲它本身的都很少,这与它的策略导向有关系,大家觉得没什么好讲的。**总体而言,召回环节的有监督模型化以及一切 Embedding 化,这是两个相辅相成的总体发展趋势。**而打 embedding 的具体方法,则可以有各种选择,比如下面介绍的几个技术发展趋势,可以理解为不同的给用户和物品打 embedding 的不同方法而已。


❶ 模型召回



98b605d7edaee3576a40750c27ab51af.png


传统的标准召回结构一般是多路召回,如上图所示。如果我们根据召回路是否有用户个性化因素存在来划分,可以分成两大类:


一类是无个性化因素的召回路,比如热门商品或者热门文章或者历史点击率高的物料的召回;


另外一类是包含个性化因素的召回路,比如用户兴趣标签召回。我们应该怎么看待包含个性化因素的召回路呢?其实吧,你可以这么看,**可以把某个召回路看作是:单特征模型排序的排序结果。**意思是,可以把某路召回,看成是某个排序模型的排序结果,只不过,这个排序模型,在用户侧和物品侧只用了一个特征。


比如说,


标签召回,其实就是用用户兴趣标签和物品标签进行排序的单特征排序结果;

再比如协同召回,可以看成是只包含 UID 和 ItemID 的两个特征的排序结果….诸如此类。


我们应该统一从排序的角度来看待推荐系统的各个环节,这样可能会更好理解本文所讲述的一些技术。


如果我们换做上面的角度看待有个性化因素召回路,那么在召回阶段引入模型,就是自然而然的一个拓展结果:无非是把单特征排序,拓展成多特征排序的模型而已;而多路召回,则可以通过引入多特征,被融入到独立的召回模型中,找到它的替代品。如此而已。所以,随着技术的发展,在 embedding 基础上的模型化召回,必然是个符合技术发展潮流的方向。


85e94f7dc55c63e555aebfcd79da1fde.png


那么如何在召回阶段利用模型来代替多路召回呢?上图展示了一个抽象的模型召回的通用架构,核心思想是:**将用户特征和物品特征分离,各自通过某个具体的模型,分别打出用户 Embedding 以及物品 Embedding。**在线上,可以根据用户兴趣 Embedding,采用类似 Faiss 等高效 Embedding 检索工具,快速找出和用户兴趣匹配的物品,这样就等于做出了利用多特征融合的召回模型了。理论上来说,任何你能见到的有监督模型,都可以用来做这个召回模型,比如 FM/FFM/DNN 等,常说的所谓 “双塔” 模型,指的其实是用户侧和物品侧特征分离分别打 Embedding 的结构而已,并非具体的模型。


模型召回具备自己独有的好处和优势,比如**多路召回每路截断条数的超参个性化问题等会自然被消解掉。**当然,它也会带来自己的问题,比较典型的是召回内容头部问题,因为之前多路,每路召回个数靠硬性截断,可以根据需要,保证你想要召回的,总能通过某一路拉回来;而由于换成了模型召回,面向海量物料库,排在前列得分高的可能聚集在几个物料分布比较多的头部领域。解决这个问题的方法包括比如训练数据对头部领域的降采样,减少某些领域主导,以及在模型角度鼓励多样性等不同的方法。


另外一点值得注意的是:如果在召回阶段使用模型召回,理论上也应该同步采用和排序模型相同的优化目标,尤其是如果排序阶段采用多目标优化的情况下,召回模型也应该对应采取相同的多目标优化。同理,如果整个流程中包含粗排模块,粗排也应该采用和精排相同的多目标优化,几个环节优化目标应保持一致。因为召回和粗排是精排的前置环节,否则,如果优化目标不一致,很可能会出现高质量精排目标,在前置环节就被过滤掉的可能,影响整体效果。


典型工作:


FM 模型召回:推荐系统召回四模型之:全能的 FM 模型


https://zhuanlan.zhihu.com/p/58160982


DNN 双塔召回:Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations


❷ 用户行为序列召回



用户在使用 APP 或者网站的时候,一般会产生一些针对物品的行为,比如点击一些感兴趣的物品,收藏或者互动行为,或者是购买商品等。而一般用户之所以会对物品发生行为,往往意味着这些物品是符合用户兴趣的,而不同类型的行为,可能代表了不同程度的兴趣。比如购买就是比点击更能表征用户兴趣的行为。


9566434c4d6529d8c3fe0b5907e3c5da.png


而用户行为过的物品序列,其实是具备表征用户兴趣的非常有价值的信息,而且这种兴趣表征,是细粒度的用户兴趣,所以对于刻画用户兴趣具备特别的价值。利用用户行为过的物品序列,来表征用户兴趣,具备很好的实用价值。


如果我们抽象地来看的话,利用用户行为过的物品序列对用户兴趣建模,本质上就是这么个过程:输入是用户行为过的物品序列,可以只用物品 ID 表征,也可以融入物品的 Side Information 比如名称,描述,图片等,现在我们需要一个函数 Fun,这个函数以这些物品为输入,需要通过一定的方法把这些进行糅合到一个 embedding 里,而这个糅合好的 embedding,就代表了用户兴趣。无论是在召回过程,还是排序过程,都可以融入用户行为序列。在召回阶段,我们可以用用户兴趣 Embedding 采取向量召回,而在排序阶段,这个 embedding 则可以作为用户侧的特征。


所以,核心在于:这个物品聚合函数 Fun 如何定义的问题。这里需要注意的一点是:用户行为序列中的物品,是有时间顺序的。理论上,任何能够体现时序特点或特征局部性关联的模型,都比较适合应用在这里,典型的比如 CNN、RNN、Transformer 等,都比较适合用来集成用户行为序列信息。而目前的很多试验结果证明,GRU ( RNN 的变体模型 ) 可能是聚合用户行为序列效果最好又比较简单的模型。当然,RNN 不能并行的低效率,那是另外一个问题。


在召回阶段,如何根据用户行为序列打 embedding,可以采取有监督的模型,比如 Next Item Prediction 的预测方式即可;也可以采用无监督的方式,比如物品只要能打出 embedding,就能无监督集成用户行为序列内容,例如 Sum Pooling。而排序侧,必然是有监督的模式,需要注意的是:排序侧表征用户特征的时候,可以只用用户行为过的物品序列,也可以混合用户其它特征,比如群体属性特征等一起来表征用户兴趣,方式比较灵活。比如 DIEN,就是典型的采用混合模式的方法。


典型工作:


GRU:Recurrent Neural Networks with Top-k Gains for Session-based Recommendations


CNN:Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding


Transformer: Self-Attentive Sequential Recommendation


❸ 用户多兴趣拆分



上文讲了利用用户行为物品序列,打出用户兴趣 Embedding 的做法。但是,另外一个现实是:用户往往是多兴趣的,比如可能同时对娱乐、体育、收藏感兴趣。这些不同的兴趣也能从用户行为序列的物品构成上看出来,比如行为序列中大部分是娱乐类,一部分体育类,少部分收藏类等。那么能否把用户行为序列物品中,这种不同类型的用户兴趣细分,而不是都笼统地打到一个用户兴趣 Embedding 里呢?用户多兴趣拆分就是解决这类更细致刻画用户兴趣的方向。


89f9a43f713db97bcb325f3829fbc0f5.png


用户多兴趣拆分,本质上是上文所叙述的用户行为序列打 embedding 方向的一个细化,无非上文说的是:以用户行为序列物品作为输入,通过一些能体现时序特点的模型,映射成一个用户兴趣 embedding。而用户多兴趣拆分,输入是一样的,输出不同,无非由输出单独一个用户 embedding,换成输出多个用户兴趣 embedding 而已。虽说道理如此,但是在具体技术使用方向上却不太一样,对于单用户兴趣 embedding 来说,只需要考虑信息有效集成即可;而对于多用户兴趣拆分来说,需要多做些事情,多做什么事情呢?本质上,把用户行为序列打到多个 embedding 上,实际它是个类似聚类的过程,就是把不同的 Item,聚类到不同的兴趣类别里去。目前常用的拆分用户兴趣 embedding 的方法,主要是胶囊网络和 Memory Network,但是理论上,很多类似聚类的方法应该都是有效的,所以完全可以在这块替换成你自己的能产生聚类效果的方法来做。


说到这里,有同学会问了:把用户行为序列拆分到不同的 embedding 里,有这个必要吗?反正不论怎样,即使是一个 embedding,信息都已经包含到里面了,并未有什么信息损失问题呀。这个问题很好。我的个人感觉是:在召回阶段,把用户兴趣拆分成多个 embedding 是有直接价值和意义的,前面我们说过,召回阶段有时候容易碰到头部问题,就是比如通过用户兴趣 embedding 拉回来的物料,可能集中在头部优势领域中,造成弱势兴趣不太能体现出来的问题。而如果把用户兴趣进行拆分,每个兴趣 embedding 各自拉回部分相关的物料,则可以很大程度缓解召回的头部问题。所以我感觉,这种兴趣拆分,在召回阶段是很合适的,可以定向解决它面临的一些实际问题。对于排序环节,是否有必要把用户兴趣拆分成多个,我倒觉得必要性不是太大,很难直观感受这样做背后发生作用的机理是怎样的。我能想到的,在排序环节使用多兴趣 Embedding 能发生作用的地方,好像有一个:因为我们在计算 user 对某个 item 是否感兴趣的时候,对于用户行为序列物品,往往计算目标 item 和行为序列物品的 Attention 是有帮助的,因为用户兴趣是多样的,物品 Item 的类型归属往往是唯一的,所以行为序列里面只有一部分物品和当前要判断的 Item 是类型相关的,这会对判断有作用,其它的无关物品其实没啥用,于是 Attention 就是必要的,可以减少那些无关物品对当前物品判断的影响。而当行为序列物品太多的时候,我们知道,Atttention 计算是非常耗时的操作,如果我们把这种 Attention 计算,放到聚类完的几个兴趣 embedding 维度计算,无疑能极大提升训练和预测的速度。貌似这个优点还是成立的。


典型工作:


召回:Multi-Interest Network with Dynamic Routing for Recommendation at Tmall


排序:Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction


❹ 知识图谱融合召回



1e5c39133cd0b1ead68f6478f52d3ec7.png


推荐系统中,最核心的数据是用户对物品的行为数据,因为这直接表明了用户兴趣所在。如上图所示,如果把用户放在一侧,物品放在另一侧,若用户对某物品有行为产生,则建立一条边,这样就构建了用户-物品交互的二部图。其实,有另外一种隐藏在冰山之下的数据,那就是物品之间是有一些知识联系存在的,就是我们常说的知识图谱,而这类数据是可以考虑用来增强推荐效果的,尤其是对于用户行为数据稀疏的场景,或者冷启动场景。以上图例子说明,用户点击过电影 “泰坦尼克号”,这是用户行为数据,我们知道,电影 “泰坦尼克号” 的主演是莱昂纳多,于是可以推荐其它由莱昂纳多主演的电影给这个用户。后面这几步操作,利用的是电影领域的知识图谱数据,通过知识图谱中的 “电影1—>主演—>电影2” 的图路径给出的推荐结果。


1430e1bfc530c2babb0fb2d9b5b5463a.png


用于做推荐,一般有两大类知识图谱融合模式:知识图谱 Embedding 模式 ( KGE ) 及图路径模式。知识图谱 Embedding 模式首先根据 TransE 等对知识图谱进行 Embedding 化编码的工具,将节点和边转换成 Embedding 表征方式。然后根据用户行为过的物品,以及物品在知识图谱中的 Embedding 和知识图谱中其它知识 embedding 的距离,来扩展物品的信息含量,或者扩充用户行为数据,类似用已知的用户行为数据,在知识图谱辅助下进行外扩。知识图谱的 Embedding 模式在可解释性方面比较弱,因为知识之间的关联是通过 Embedding 计算出来的,不好解释为什么从这个知识跳到那个知识;而图路径模式则是根据物品属性之间的关联等人工定义好的所谓 Meta-Path,也就是人工定义的知识图谱中知识的关联和传播模式,通过中间属性来对知识传播进行路径搭建,具体例子就是上面说的 “电影1主演电影2”,这就是人事先定义好的 Meta-Path,也就是人把自己的经验写成规则,来利用知识图谱里的数据。图路径模式在可解释性方面效果较好,因为是人工定义的传播路径,所以非常好理解知识传播关系,但是往往实际应用效果并不好。


知识图谱是一种信息拓展的模式,很明显,对知识进行近距离的拓展,这可能会带来信息补充作用,但是如果拓展的比较远,或者拓展不当,反而可能会引入噪音,这个道理好理解。所以,我的感觉是,知识图谱在排序侧并不是特别好用,如果想用的化,比较适合用户行为数据非常稀疏以及用户冷启动的场景,也就是说如果用户数据太少,需要拓展,可以考虑使用它。另外,知识图谱还有一个普适性的问题,完全通用的知识图谱在特定场景下是否好用,对此我是有疑问的,而专业性的知识图谱,还有一个如何构建以及构建成本问题;而且很多时候,所谓的知识传播,是可以通过添加属性特征来解决的,比如:电影1—>主演—>电影2这种知识传播路径,完全可以通过把主演作为电影这个实体的属性特征加入常规排序模型,来达到类似知识近距离传播的目的,所以感觉也不是很有必要在排序侧专门去做知识图谱拓展这种事情。


这种知识拓展,可能比较适合用在召回阶段,因为对于传统观点的召回来说,精准并不是最重要的目标,找出和用户兴趣有一定程度相关性但是又具备泛化性能的物品是召回侧的重点,所以可能知识图谱的模式更适合将知识图谱放在召回侧。


当然,知识图谱有一个独有的优势和价值,那就是对于推荐结果的可解释性;比如推荐给用户某个物品,可以在知识图谱里通过物品的关键关联路径给出合理解释,这对于推荐结果的解释性来说是很好的,因为知识图谱说到底是人编码出来让自己容易理解的一套知识体系,所以人非常容易理解其间的关系。但是,在推荐领域目前的工作中,知识图谱的可解释性往往是和图路径方法关联在一起的,而 Path 类方法,很多实验证明了,在排序角度来看,是效果最差的一类方法。所以,我觉得,应该把知识图谱的可解释性优势从具体方法中独立出来,专门用它来做推荐结果的可解释性,这样就能独立发挥它自身的优势。


至于如何利用知识图谱做召回,其实很直观,比如可以采取如下的无监督学习版本:例如,推荐系统里对用户感兴趣的实体比如某个或者某些明星,往往是个单独的召回路,而可以根据用户的兴趣实体,通过知识图谱的实体 Embedding 化表达后 ( 或者直接在知识图谱节点上外扩 ),通过知识外扩或者可以根据 Embedding 相似性,拓展出相关实体。形成另外一路相关性弱,但是泛化能力强的 Knowledge 融合召回路。


典型工作:


1. KGAT: Knowledge Graph Attention Network for Recommendation


2. RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems


相关文章
|
6月前
|
人工智能 自然语言处理 NoSQL
对谈Concured首席技术官:利用AI和MongoDB打造个性化内容推荐系统
内容无处不在。无论消费者寻找什么或所处任何行业,找到内容并不困难;关键在于如何找到对应的内容。
1649 0
|
存储 监控 搜索推荐
【业务架构】业务驱动的推荐系统相关技术总结
【业务架构】业务驱动的推荐系统相关技术总结
112 0
|
6月前
|
机器学习/深度学习 数据采集 人工智能
构建一个基于AI的推荐系统的技术探索
【5月更文挑战第23天】本文探讨了构建基于AI的推荐系统的关键技术,包括数据收集、预处理、特征工程、推荐算法(如协同过滤、内容过滤、深度学习)及结果评估。通过理解用户行为和偏好,推荐系统能提供个性化建议。实现步骤涉及确定业务需求、设计数据方案、预处理、算法选择、评估优化及系统部署。随着技术进步,未来推荐系统将更加智能。
|
26天前
|
机器学习/深度学习 人工智能 搜索推荐
用AI技术打造个性化新闻推荐系统
【10月更文挑战第7天】本文将介绍如何使用AI技术构建一个个性化的新闻推荐系统。我们将从数据收集、处理,到模型训练和优化,最后实现推荐系统的全过程进行讲解。通过这篇文章,你将了解到如何利用机器学习和深度学习技术,为用户提供精准的新闻推荐。
40 0
|
3月前
|
数据采集 机器学习/深度学习 人工智能
利用AI技术实现个性化新闻推荐系统
【8月更文挑战第31天】 本文将介绍如何利用AI技术实现一个个性化的新闻推荐系统。我们将使用Python语言和一些常用的机器学习库,如scikit-learn和pandas,来构建一个简单的推荐系统。这个系统可以根据用户的阅读历史和兴趣偏好,为他们推荐相关的新闻文章。我们将从数据预处理、特征提取、模型训练和结果评估等方面进行详细的讲解。
|
4月前
|
机器学习/深度学习 搜索推荐 算法
深度学习在推荐系统中的应用:技术解析与实践
【7月更文挑战第6天】深度学习在推荐系统中的应用为推荐算法的发展带来了新的机遇和挑战。通过深入理解深度学习的技术原理和应用场景,并结合具体的实践案例,我们可以更好地构建高效、准确的推荐系统,为用户提供更加个性化的推荐服务。
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
构建基于AI的个性化新闻推荐系统:技术探索与实践
【6月更文挑战第5天】构建基于AI的个性化新闻推荐系统,通过数据预处理、用户画像构建、特征提取、推荐算法设计及结果评估优化,解决信息爆炸时代用户筛选新闻的难题。系统关键点包括:数据清洗、用户兴趣分析、表示学习、内容及协同过滤推荐。实践案例证明,结合深度学习的推荐系统能提升用户体验,未来系统将更智能、个性化。
|
机器学习/深度学习 存储 搜索推荐
协同过滤推荐系统:原理、技术与Java实践
前言 在当今信息爆炸的时代,推荐系统已成为解决信息过载问题的有效工具。从电商网站的商品推荐到社交媒体的信息推送,推荐系统已经渗透到了我们生活的方方面面。而协同过滤(Collaborative Filtering,简称CF)算法是推荐系统领域的一种经典技术,通过分析用户之间的相似性或物品之间的相似性,为用户推荐与其兴趣相关的物品。
1969 1
|
机器学习/深度学习 人工智能 自然语言处理
深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型、DSSM模型召回排序策略以及和其他模型对比
深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型、DSSM模型召回排序策略以及和其他模型对比
深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型、DSSM模型召回排序策略以及和其他模型对比
|
数据采集 搜索推荐 API
"利用淘宝API接口实现智能化商品推荐系统技术探究"
随着电商行业的火爆发展,如何有效从海量商品中筛选出用户感兴趣的商品成为了每个电商平台必须面对的难题。而商品的精准推荐技术是解决该难题的重要手段之一。淘宝作为国内电商平台的龙头企业,其提供的API接口为开发者提供了打造智能化商品推荐系统的可能。
263 0