发生死锁怎么办

简介: 锁的定义:死锁是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。竞争的资源可以是:锁、网络连接、磁盘共享变量等一切可以称作是 【资源】的东西。

我们使用锁来保证线程安全,但是使用不当与滥用可能就会引起死锁。并发程序一旦死锁,一般没有特别好的办法,很多时候只能重启。所以我们一定要比避免死锁。


简单例子


举个不恰当的例子:现在岳不群通过阴谋手段获取到了葵花宝典的上册,然后就闭关修炼自宫了,此刻他想继续争夺下册一块练,不然自宫就白忙活了。这个时候下册被林平之拿到了,他也要修炼葵花宝典,所以藏着下册去找上册来自宫。现在问题来了,岳不群找不到下册。林平之拿不到上册,两个人就只能干瞪眼谁也不肯交出自己的,同事还要获取对方的。


如果此时有一个线程 A ,按照先获持有锁 a 再获取锁 b的顺序获得锁,同时另外一个线程 B,按照先获取锁 b 再获取锁 a 的顺序获取锁。如下图所示:


image.png


接着我们用代码模拟上线的执行过程,默认使用 SpringBoot 环境


@Component
public class DeadLock {
    private static Object lockA = new Object();
    private static Object lockB = new Object();
    public void deadLock() {
        Thread threadA = new Thread(() -> {
            synchronized (lockA) {
                System.out.println(Thread.currentThread().getName() + "获取 lockA 成功");
                try {
                    TimeUnit.SECONDS.sleep(1);
                    System.out.println(Thread.currentThread().getName() + "尝试获取 lockB ");
                    synchronized (lockB) {
                        System.out.println(Thread.currentThread().getName() + "获取 lockB 成功");
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        Thread threadB = new Thread(() -> {
            synchronized (lockB) {
                System.out.println(Thread.currentThread().getName() + "获取 lockB 成功 ");
                try {
                    TimeUnit.SECONDS.sleep(1);
                    System.out.println(Thread.currentThread().getName() + "尝试获取 lockA ");
                    synchronized (lockA) {
                        System.out.println(Thread.currentThread().getName() + "获取 lockA 成功");
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        threadA.start();
        threadB.start();
    }
}


单元测试


@RunWith(SpringRunner.class)
@SpringBootTest
public class DemoApplicationTests {
    @Autowired
    private DeadLock deadLock;
    @Test
    public void contextLoads() {
        deadLock.deadLock();
        try {
            Thread.currentThread().join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}


控制台打印


Thread-4获取 lockB 成功 
Thread-3获取 lockA 成功
Thread-3尝试获取 lockB 
Thread-4尝试获取 lockA


我们可以发现 Thread-3 获取 lockA 成功后尝试获取 lockB 一直不能成功。相互等待对方释放形成了死锁。


死锁检查


jstack 指令


该指令可以生成虚拟机当前时刻的线程快照。线程快照是当前每一条线程正在执行的方法对战的集合,主要目的是定位线程出现长时间停顿的原因,比如 线程间死锁死循环请求外部资源导致的长时间等待等。


先通过 jps 获取正在执行的进程 id。


$ jps
23264 Jps
8472 JUnitStarter


再用jstack 查看当前进程的堆栈信息


$ jstack -F 8472
Attaching to process ID 8472, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 25.181-b13
Deadlock Detection:
Found one Java-level deadlock:
=============================
"Thread-4":
  waiting to lock Monitor@0x000000001f0134f8 (Object@0x00000007721d90f0, a java/lang/Object),
  which is held by "Thread-3"
"Thread-3":
  waiting to lock Monitor@0x000000001f011ef8 (Object@0x00000007721d90e0, a java/lang/Object),
  which is held by "Thread-4"
Found a total of 1 deadlock.
Thread 21: (state = BLOCKED)
 - com.zero.demo.deadlock.DeadLock.lambda$deadLock$1() @bci=79, line=35 (Interpreted frame)
 - com.zero.demo.deadlock.DeadLock$$Lambda$170.run() @bci=0 (Interpreted frame)
 - java.lang.Thread.run() @bci=11, line=748 (Interpreted frame)
Thread 20: (state = BLOCKED)
 - com.zero.demo.deadlock.DeadLock.lambda$deadLock$0() @bci=79, line=20 (Interpreted frame)
 - com.zero.demo.deadlock.DeadLock$$Lambda$169.run() @bci=0 (Interpreted frame)
 - java.lang.Thread.run() @bci=11, line=748 (Interpreted frame)


可以看到存在死锁 Found a total of 1 deadlock.


死锁预防


我们知道了死锁如何产生的,那么就知道该如何去预防。如果一个线程每次只能获取一个锁,那么就不会出现由于嵌套持有锁顺序导致的死锁。


1. 正确的顺序获得锁


如果必须获取多个锁,我们就要考虑不同线程获取锁的顺序。


上面的例子出现死锁的根本原因就是获取所的顺序是乱序的,超乎我们控制的。上面例子最理想的情况就是把业务逻辑抽离出来,把获取锁的代码放在一个公共的方法里面,让这两个线程获取锁


都是从我的公共的方法里面获取,当Thread1线程进入公共方法时,获取了A锁,另外Thread2又进来了,但是A锁已经被Thread1线程获取了,所以只能阻塞等待。Thread1接着又获取锁B,Thread2线程就不能再获取不到了锁A,更别说再去获取锁B了,这样就有一定的顺序了。只有当线程1释放了所有锁,线程B才能获取。


比如前面的例子我们改成


@Component
public class DeadLock {
    private static Object lockA = new Object();
    private static Object lockB = new Object();
    public void deadLock() {
        Thread threadA = new Thread(() -> {
            getLock();
        });
        Thread threadB = new Thread(() -> {
            getLock();
        });
        threadA.start();
        threadB.start();
    }
    private void getLock() {
        synchronized (lockA) {
            System.out.println(Thread.currentThread().getName() + "获取 lockA 成功");
            try {
                TimeUnit.SECONDS.sleep(1);
                System.out.println(Thread.currentThread().getName() + "尝试获取 lockB ");
                synchronized (lockB) {
                    System.out.println(Thread.currentThread().getName() + "获取 lockB 成功");
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}


查看打印结果,我们发现 线程4 获取成功然后线程3才能继续获取。


Thread-4获取 lockA 成功
Thread-4尝试获取 lockB 
Thread-4获取 lockB 成功
Thread-3获取 lockA 成功
Thread-3尝试获取 lockB 
Thread-3获取 lockB 成功


2. 超时放弃


当线程获取锁超时了则放弃,这样就避免了出现死锁获取的情况。当使用synchronized关键词提供的内置锁时,只要线程没有获得锁,那么就会永远等待下去,然而Lock接口提供了boolean tryLock(long time, TimeUnit unit) throws InterruptedException方法,该方法可以按照固定时长等待锁,因此线程可以在获取锁超时以后,主动释放之前已经获得的所有的锁。通过这种方式,也可以很有效地避免死锁。


其他死锁


我们再来回顾一下死锁的定义,“死锁是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。” 死锁条件里面的竞争资源,可以是线程池里的线程、网络连接池的连接,数据库中数据引擎提供的锁,等等一切可以被称作竞争资源的东西。


线程池死锁

final ExecutorService executorService = 
        Executors.newSingleThreadExecutor();
Future<Long> f1 = executorService.submit(new Callable<Long>() {
    public Long call() throws Exception {
        System.out.println("start f1");
        Thread.sleep(1000);//延时
        Future<Long> f2 = 
           executorService.submit(new Callable<Long>() {
            public Long call() throws Exception {
                System.out.println("start f2");
                return -1L;
            }
        });
        System.out.println("result" + f2.get());
        System.out.println("end f1");
        return -1L;
    }
});


线程池类型是单一线程,但是任务1依赖任务2的执行结果,由于单线程模式,任务1没有执行完,任务2永远得不到执行,就死锁了。


总结


在我的理解当中,死锁就是“两个任务以不合理的顺序互相争夺资源”造成,因此为了规避死锁,应用程序需要妥善处理资源获取的顺序。 另外有些时候,死锁并不会马上在应用程序中体现出来,在通常情况下,都是应用在生产环境运行了一段时间后,才开始慢慢显现出来,在实际测试过程中,由于死锁的隐蔽性,很难在测试过程中及时发现死锁的存在,而且在生产环境中,应用出现了死锁,往往都是在应用状况最糟糕的时候——在高负载情况下。因此,开发者在开发过程中要谨慎分析每个系统资源的使用情况,合理规避死锁,另外一旦出现了死锁,也可以尝试使用本文中提到的一些工具,仔细分析,总是能找到问题所在的。

相关文章
|
8月前
|
监控 算法 安全
怎么防止死锁
怎么防止死锁
|
5月前
死锁原因
死锁原因
70 1
|
8月前
|
安全 算法 程序员
|
8月前
|
SQL 存储 设计模式
如何与死锁斗争!!!
尽量不要改动线上数据库的字段,因为会触发锁表影响业务,严重时还可能出现死锁!数据库真的出现了死锁,业务全挂了,这种时候应该怎么办呢?本文就给大家分享一下数据库死锁的排查思路,万一出了问题,也有底气去解决。
72 1
|
8月前
|
安全 Java 测试技术
发生死锁怎么办
发生死锁怎么办
71 0
|
8月前
死锁的发生与避免
死锁的发生与避免 死锁是指两个或者多个进程在执行过程中,因争夺资源而造成的一种僵局,若无外力作用,它们都将无法推进下去。在计算机系统中,死锁是一种常见的问题,因此需要采取一些措施来避免死锁的发生。
106 0
|
算法 安全
死锁的总结(2)
死锁的总结
57 0
|
安全 算法
死锁的总结(1)
死锁的总结
43 0
|
算法 调度
死锁的理解
死锁的理解
95 0