什么是树状数组?让这个12岁年轻人为你讲解

简介: 既然名字叫树状数组,那它必然是个数组,可外表下藏着二叉树的结构。精巧的结构与lowbit密不可分,真是妙极了。以下内容中,我们在这里管原始的数组叫做a,树状数组(经过处理)叫做bit,三个图中的数字均为下标,不是值!


Part 1 我学它干啥?


树状数组,Binary Indexed Tree(简称BIT),是由Peter M. Fenwick1994年发明的——百度百科

名字十分高大上,那么它是干什么的呢?

求和

求和是树状数组中的一个应用,并不是只能求和,本文使用求和作为例子。


现在有一个数组a,我们需要求很多次数组中不同区间的和,而且多次对a中随意一项进行更改。
比如说
a = {0, 1, 5, 3, 2, 4}

第一次求[1, 3],得到1 + 5 + 3 = 9
第二次求[2, 4],得到5 + 3 + 2 = 10
第三次,这时候我把a[2] += 2
第四次求[1, 5],得到1 + 7 + 3 + 2 + 4 = 17

[l, r]表示从下标l开始,到r结束的区间,包含l和r。
l: left
r: right

这时候很多同学想到的第一个方法,就是直接挨个加起来不就好了吗?

可此题暗藏玄机,我们要进行多次求和啊,每一次都重新计算太慢,能不能提前加好一些区域,反复使用呢?
这就要请出我们的主角了——树状数组


Part 2 lowbit



树状数组的结构十分精妙,其中离不开一个基本运算——lowbit

640.gif

lowbit(i) 可以解释为:i中最低位的1以及后面的0;或者你可以把它理解成i能被n整除,n还可以写成2k

一种lowbit的实现方式为lowbit(x) = x & -x

longlonglowbit(longlong x){    return x &-x;
}

还是拿172举例子,化成二进制后我们发现除了尾部的100相同之外,其他位都不同,使用按位与能得到lowbit的值640.png

Part 3 树状数组



既然名字叫树状数组,那它必然是个数组,可外表下藏着二叉树的结构。
精巧的结构与lowbit密不可分,真是妙极了。

以下内容中,我们在这里管原始的数组叫做a,树状数组(经过处理)叫做bit,三个图中的数字均为下标,不是值!

结构

640.gif

bit中存放了多个数的和,那么具体存了几个,在哪里呢?
我们规定,
bit[i]中存从右往左数lowbit(i)个数。

bit[i] = 在数组a中从 i - lowbit(i) + 1 i 求和

更改单个数值

首先,更改数据可以转换成加法,我们这里讨论加法,和更改是一样的。

挨个加起来时,更改a[i]只需要动它一个就可以了。
可是在树状数组中,可能有好几项,都包括这个a[i]

a[3]来举例子吧。

bit[3] 对应 a[3, 3] 的和bit[4] 对应 a[1, 4] 的和bit[8] 对应 a[1, 8] 的和bit[16] 对应 a[1, 16] 的和

以上四个bit中的值都需要更改

640.gif
在图中,我们可以看出,43头上,84头上,168头上。我们只需要找到一种方式,得到一个块 头上的块,然后使用循环能推出整串。

如何找到自己头上的数呢?640.jpg

图中的6和橘色没关系,是第二组例子

我们发现,在当前块的位置加上当前块的长度之后能跳到头上。
我是这么理解的:
加上一个当前块后会把局部的空缺补上,合并成了一块,而这块也许也补了更大的空缺,这样就一次跳了好几级

上文定义规定了i个块长度 = lowbit(i),拿来用即可。

c++实现:

void add(int index, long long value) {
    while (index <= n) { // 更新直到最大的块
        node[index] += value; // 更新当前的块
        index += lowbit(index); // 加上一个自己的长度,补上空缺,得到下一个块
    }
}

区间求和


640.gif

先考虑[1, r]的求和
从右往左取块,将块代表的数值加起来即可

图中的例子:

·       第一次取到13,长度为lowbit(13) = 1
第二次13取完了从12开始取,长度为4,一次性将[9, 12]取完
第三次
[9, 13]取完了从8开始,长度为8,取走[1, 8],到此[1, 13]全部取走

c++实现

long long sum(int index) {
    long long sum = 0;
    while (index > 0) {
        sum +=node[index];
        index -= lowbit(index);
    }
    return sum;
}

那如果求和左端点不在1处呢?

[l, r]求和,可以写成sum(r) - sum(l - 1)
先把大区域[1, r]求出来,然后扣掉[1, l - 1]的部分,不就是[l, r]吗?


构造



以上的幻想只是存在于树已经有了之后,如何根据数组a(原始数组),来构造一棵树呢?
一个简单的方法:

1.  把数组bit全初始化为0

2.  遍历整个数组a

3.  对于每一个数组a[i],都对bit进行add(i, a[i])

每一次add之后都能保证树状数组是正确的,全加一遍后自然构建出一整棵树。

时间复杂度对比

下面的暴力指的是开头提到的挨个相加

·       求和

·       暴力:O(n)(挨个相加,加n次)

·       树状数组:O(log n)(结构与二叉树相仿)

·       更改

·       暴力:O(1)(改一次即可)

·       树状数组:O(log n)(需要改一串,但结构与二叉树相仿)

·       构造

·       暴力:O(n)(当做是读入的复杂度)

·       树状数组:O(n log n)(做n次加法,每次加法为log n

树状数组适合在:多次求和,多次修改,数据量大的场景下使用。

如果无需支持修改,建议使用前缀和,构造O(n),求和O(1)

代码

下面给出的是C++代码。

BITMain为树状数组的使用案例,对应洛谷 树状数组

https://www.luogu.com.cn/problem/P3374。
//
// Created by Cat-shao on 2021/2/9.
//
#include <cstdio>
#include <cstring>
using namespace std;
const long long MAX_N = 5000100;
long long lowbit(long long x) {
    return x & -x;
}
class BIT {
public:
    long long node[MAX_N], n;
    BIT(int _n) {
        memset(node, 0, sizeof(node));
        n = _n;
    }
    long long sum(int index) {
        long long sum = 0;
        while (index > 0) {
            sum +=node[index];
            index -= lowbit(index);
        }
        return sum;
    }
    void add(int index, long long value) {
        while (index <= n) {
            node[index] += value;
            index += lowbit(index);
        }
    }
};
int BITMain()
{
    // https://www.luogu.com.cn/problem/P3374
    int n, m, op, x, y;
    long long value;
    scanf("%d%d", &n, &m);
    BIT tree = BIT(n);
    for (int i = 1; i <= n; ++i) {
        scanf("%lld", &value);
        tree.add(i, value);
    }
    for (int i = 0; i < m; ++i) {
        scanf("%d%d%d", &op, &x, &y);
        if (op == 1) {
            tree.add(x, y);
        } else if (op == 2) {
            printf("%lld\n", (tree.sum(y) - tree.sum(x - 1)));
        }
    }
    return 0;
}
int main()
{
    BITMain();
}


相关文章
|
3月前
acwing 110 抓住那头牛
acwing 110 抓住那头牛
13 0
【寒假每日一题】AcWing 4455. 出行计划
目录 一、题目 1、原题链接 2、题目描述 二、解题报告 1、思路分析 2、时间复杂度 3、代码详解 三、知识风暴 差分与前缀和
123 0
|
测试技术
蓝桥 晚会节目单 (线段树)
蓝桥 晚会节目单 (线段树)
|
存储 算法 Java
【AcWing每日一题】4818. 奶牛大学
【AcWing每日一题】4818. 奶牛大学
121 0
|
机器学习/深度学习 C++
蓝桥杯C++小朋友崇拜圈
蓝桥杯C++小朋友崇拜圈
118 0
|
存储 人工智能
【蓝桥杯集训·每日一题】AcWing 3662. 最大上升子序列和
文章目录 一、题目 1、原题链接 2、题目描述 二、解题报告 1、思路分析 2、时间复杂度 3、代码详解 三、知识风暴 树状数组
85 0
|
存储 人工智能 算法
【蓝桥杯集训·每日一题】AcWing 3305. 作物杂交
文章目录 一、题目 1、原题链接 2、题目描述 二、解题报告 1、思路分析 2、时间复杂度 3、代码详解 三、知识风暴 Spfa算法
130 0
|
前端开发 程序员 C语言
LeetCode | 循环队列的爱情【恋爱法则——环游世界】
环形队列包含真挚的我们 ❤ 兜兜转换最后还是你
114 0
LeetCode | 循环队列的爱情【恋爱法则——环游世界】
|
C++
【力扣·每日一题】913. 猫和老鼠(C++ 记忆化搜索 博弈)
【力扣·每日一题】913. 猫和老鼠(C++ 记忆化搜索 博弈)
229 0
【力扣·每日一题】913. 猫和老鼠(C++ 记忆化搜索 博弈)