实时统计每天pv,uv的sparkStreaming结合redis结果存入mysql供前端展示

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 最近有个需求,实时统计pv,uv,结果按照date,hour,pv,uv来展示,按天统计,第二天重新统计,当然了实际还需要按照类型字段分类统计pv,uv,比如按照date,hour,pv,uv,type来展示。这里介绍最基本的pv,uv的展示。

最近有个需求,实时统计pv,uv,结果按照date,hour,pv,uv来展示,按天统计,第二天重新统计,当然了实际还需要按照类型字段分类统计pv,uv,比如按照date,hour,pv,uv,type来展示。这里介绍最基本的pv,uv的展示。


id uv pv date hour
1 155599 306053 2018-07-27 18




1、项目流程



微信图片_20220429175126.png

日志数据从flume采集过来,落到hdfs供其它离线业务使用,也会sink到kafka,sparkStreaming从kafka拉数据过来,计算pv,uv,uv是用的redis的set集合去重,最后把结果写入mysql数据库,供前端展示使用。


2、具体过程



1)pv的计算


拉取数据有两种方式,基于received和direct方式,这里用direct直拉的方式,用的mapWithState算子保存状态,这个算子与updateStateByKey一样,并且性能更好。当然了实际中数据过来需要经过清洗,过滤,才能使用。


定义一个状态函数

// 实时流量状态更新函数
  val mapFunction = (datehour:String, pv:Option[Long], state:State[Long]) => {
    val accuSum = pv.getOrElse(0L) + state.getOption().getOrElse(0L)
    val output = (datehour,accuSum)
    state.update(accuSum)
    output
  }
计算pv
 val stateSpec = StateSpec.function(mapFunction)
 val helper_count_all = helper_data.map(x => (x._1,1L)).mapWithState(stateSpec).stateSnapshots().repartition(2)


这样就很容易的把pv计算出来了。


2)uv的计算


uv是要全天去重的,每次进来一个batch的数据,如果用原生的reduceByKey或者groupByKey对配置要求太高,在配置较低情况下,我们申请了一个93G的redis用来去重,原理是每进来一条数据,将date作为key,guid加入set集合,20秒刷新一次,也就是将set集合的尺寸取出来,更新一下数据库即可。


helper_data.foreachRDD(rdd => {
        rdd.foreachPartition(eachPartition => {
        // 获取redis连接
          val jedis = getJedis
          eachPartition.foreach(x => {
            val date:String = x._1.split(":")(0)
            val key = date
            // 将date作为key,guid(x._2)加入set集合
            jedis.sadd(key,x._2)
            // 设置存储每天的数据的set过期时间,防止超过redis容量,这样每天的set集合,定期会被自动删除
            jedis.expire(key,ConfigFactory.rediskeyexists)
          })
          // 关闭连接
          closeJedis(jedis)
        })
      })


3)结果保存到数据库


结果保存到mysql,数据库,20秒刷新一次数据库,前端展示刷新一次,就会重新查询一次数据库,做到实时统计展示pv,uv的目的。

/**
  * 插入数据
    * @param data (addTab(datehour)+helperversion)
    * @param tbName
    * @param colNames
    */
  def insertHelper(data: DStream[(String, Long)], tbName: String, colNames: String*): Unit = {
    data.foreachRDD(rdd => {
      val tmp_rdd = rdd.map(x => x._1.substring(11, 13).toInt)
      if (!rdd.isEmpty()) {
        val hour_now = tmp_rdd.max() // 获取当前结果中最大的时间,在数据恢复中可以起作用
        rdd.foreachPartition(eachPartition => {
          try {
            val jedis = getJedis
            val conn = MysqlPoolUtil.getConnection()
            conn.setAutoCommit(false)
            val stmt = conn.createStatement()
            eachPartition.foreach(x => {
              val datehour = x._1.split("\t")(0)
              val helperversion = x._1.split("\t")(1)
              val date_hour = datehour.split(":")
              val date = date_hour(0)
              val hour = date_hour(1).toInt
              val colName0 = colNames(0) // date
              val colName1 = colNames(1) // hour
              val colName2 = colNames(2) // count_all
              val colName3 = colNames(3) // count
              val colName4 = colNames(4) // helperversion
              val colName5 = colNames(5) // datehour
              val colName6 = colNames(6) // dh
              val colValue0 = addYin(date)
              val colValue1 = hour
              val colValue2 = x._2.toInt
              val colValue3 = jedis.scard(date + "_" + helperversion) // // 2018-07-08_10.0.1.22
              val colValue4 = addYin(helperversion)
              var colValue5 = if (hour < 10) "'" + date + " 0" + hour + ":00 " + helperversion + "'" else "'" + date + " " + hour + ":00 " + helperversion + "'"
              val colValue6 = if(hour < 10) "'" + date + " 0" + hour + ":00'" else "'" + date + " " + hour + ":00'"
              var sql = ""
              if (hour == hour_now) { // uv只对现在更新
                sql = s"insert into ${tbName}(${colName0},${colName1},${colName2},${colName3},${colName4},${colName5}) values(${colValue0},${colValue1},${colValue2},${colValue3},${colValue4},${colValue5}) on duplicate key update ${colName2} =  ${colValue2},${colName3} = ${colValue3}"
              } else {
                sql = s"insert into ${tbName}(${colName0},${colName1},${colName2},${colName4},${colName5}) values(${colValue0},${colValue1},${colValue2},${colValue4},${colValue5}) on duplicate key update ${colName2} =  ${colValue2}"
              }
              stmt.addBatch(sql)
            })
            closeJedis(jedis)
            stmt.executeBatch() // 批量执行sql语句
            conn.commit()
            conn.close()
          } catch {
            case e: Exception => {
              logger.error(e)
              logger2.error(HelperHandle.getClass.getSimpleName + e)
            }
          }
        })
      }
    })
  }
// 计算当前时间距离次日零点的时长(毫秒)
def resetTime = {
    val now = new Date()
    val todayEnd = Calendar.getInstance
    todayEnd.set(Calendar.HOUR_OF_DAY, 23) // Calendar.HOUR 12小时制
    todayEnd.set(Calendar.MINUTE, 59)
    todayEnd.set(Calendar.SECOND, 59)
    todayEnd.set(Calendar.MILLISECOND, 999)
    todayEnd.getTimeInMillis - now.getTime
 }


4)数据容错


流处理消费kafka都会考虑到数据丢失问题,一般可以保存到任何存储系统,包括mysql,hdfs,hbase,redis,zookeeper等到。这里用SparkStreaming自带的checkpoint机制来实现应用重启时数据恢复。

checkpoint

这里采用的是checkpoint机制,在重启或者失败后重启可以直接读取上次没有完成的任务,从kafka对应offset读取数据。


// 初始化配置文件
ConfigFactory.initConfig()
val conf = new SparkConf().setAppName(ConfigFactory.sparkstreamname)
conf.set("spark.streaming.stopGracefullyOnShutdown","true")
conf.set("spark.streaming.kafka.maxRatePerPartition",consumeRate)
conf.set("spark.default.parallelism","24")
val sc = new SparkContext(conf)
while (true){
  val ssc = StreamingContext.getOrCreate(ConfigFactory.checkpointdir + DateUtil.getDay(0),getStreamingContext _ )
    ssc.start()
    ssc.awaitTerminationOrTimeout(resetTime)
    ssc.stop(false,true)
}


checkpoint是每天一个目录,在第二天凌晨定时销毁StreamingContext对象,重新统计计算pv,uv。


注意


ssc.stop(false,true)表示优雅地销毁StreamingContext对象,不能销毁SparkContext对象,ssc.stop(true,true)会停掉SparkContext对象,程序就直接停了。


应用迁移或者程序升级


在这个过程中,我们把应用升级了一下,比如说某个功能写的不够完善,或者有逻辑错误,这时候都是需要修改代码,重新打jar包的,这时候如果把程序停了,新的应用还是会读取老的checkpoint,可能会有两个问题:


  1. 执行的还是上一次的程序,因为checkpoint里面也有序列化的代码;
  2. 直接执行失败,反序列化失败;


其实有时候,修改代码后不用删除checkpoint也是可以直接生效,经过很多测试,我发现如果对数据的过滤操作导致数据过滤逻辑改变,还有状态操作保存修改,也会导致重启失败,只有删除checkpoint才行,可是实际中一旦删除checkpoint,就会导致上一次未完成的任务和消费kafka的offset丢失,直接导致数据丢失,这种情况下我一般这么做。


这种情况一般是在另外一个集群,或者把checkpoint目录修改下,我们是代码与配置文件分离,所以修改配置文件checkpoint的位置还是很方便的。然后两个程序一起跑,除了checkpoint目录不一样,会重新建,都插入同一个数据库,跑一段时间后,把旧的程序停掉就好。以前看官网这么说,只能记住不能清楚明了,只有自己做时才会想一下办法去保证数据准确。


5)日志


日志用的log4j2,本地保存一份,ERROR级别的日志会通过邮件发送到手机。

val logger = LogManager.getLogger(HelperHandle.getClass.getSimpleName)
  // 邮件level=error日志
  val logger2 = LogManager.getLogger("email")


目录
相关文章
|
6月前
|
存储 SQL 关系型数据库
轻松入门MySQL:加速进销存!利用MySQL存储过程轻松优化每日销售统计(15)
轻松入门MySQL:加速进销存!利用MySQL存储过程轻松优化每日销售统计(15)
160 0
|
6月前
|
关系型数据库 MySQL 数据库
第十四章 演示MYSQL自定义values.yaml绑定PV和PVC和数据库用户密码
第十四章 演示MYSQL自定义values.yaml绑定PV和PVC和数据库用户密码
75 0
|
3月前
|
前端开发 关系型数据库 MySQL
【前端学java】MySQL数据库的本地安装
【8月更文挑战第12天】MySQL数据库的本地安装
45 3
|
4月前
|
存储 JSON NoSQL
JSON 存入 Redis
【7月更文挑战第8天】
106 12
|
6月前
|
存储 缓存 NoSQL
Redis多级缓存指南:从前端到后端全方位优化!
本文探讨了现代互联网应用中,多级缓存的重要性,特别是Redis在缓存中间件的角色。多级缓存能提升数据访问速度、系统稳定性和可扩展性,减少数据库压力,并允许灵活的缓存策略。浏览器本地内存缓存和磁盘缓存分别优化了短期数据和静态资源的存储,而服务端本地内存缓存和网络内存缓存(如Redis)则提供了高速访问和分布式系统的解决方案。服务器本地磁盘缓存因I/O性能瓶颈和复杂管理而不推荐用于缓存,强调了内存和网络缓存的优越性。
610 47
|
10天前
|
缓存 前端开发 JavaScript
前端架构思考:代码复用带来的隐形耦合,可能让大模型造轮子是更好的选择-从 CDN 依赖包被删导致个站打不开到数年前因11 行代码导致上千项目崩溃谈谈npm黑洞 - 统计下你的项目有多少个依赖吧!
最近,我的个人网站因免费CDN上的Vue.js包路径变更导致无法访问,引发了我对前端依赖管理的深刻反思。文章探讨了NPM依赖陷阱、开源库所有权与维护压力、NPM生态问题,并提出减少不必要的依赖、重视模块设计等建议,以提升前端项目的稳定性和可控性。通过“left_pad”事件及个人经历,强调了依赖管理的重要性和让大模型代替人造轮子的潜在收益
|
17天前
|
SQL 存储 关系型数据库
mysql 数据库空间统计sql
mysql 数据库空间统计sql
35 0
|
3月前
|
搜索推荐 前端开发 数据可视化
基于Python协同过滤的旅游景点推荐系统,采用Django框架,MySQL数据存储,Bootstrap前端,echarts可视化实现
本文介绍了一个基于Python协同过滤算法的旅游景点推荐系统,该系统采用Django框架、MySQL数据库、Bootstrap前端和echarts数据可视化技术,旨在为用户提供个性化的旅游推荐服务,提升用户体验和旅游市场增长。
257 9
基于Python协同过滤的旅游景点推荐系统,采用Django框架,MySQL数据存储,Bootstrap前端,echarts可视化实现
|
3月前
|
搜索推荐 前端开发 算法
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。
216 7
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
|
3月前
|
前端开发 数据挖掘 关系型数据库
基于Python的哔哩哔哩数据分析系统设计实现过程,技术使用flask、MySQL、echarts,前端使用Layui
本文介绍了一个基于Python的哔哩哔哩数据分析系统,该系统使用Flask框架、MySQL数据库、echarts数据可视化技术和Layui前端框架,旨在提取和分析哔哩哔哩用户行为数据,为平台运营和内容生产提供科学依据。
181 9