100行代码实现人脸识别,AI正在变简单 | OpenCV+Python

简介: 100行代码实现人脸识别,AI正在变简单 | OpenCV+Python

1.OpenCV基本介绍

OpenCV 是一个开源的计算机视觉库,可以从 http://opencv.org 获取。

OpenCV 设计用于进行高效的计算,十分强调实时应用的开发。

它由 C++ 语言编写并进行了深度优化,从而可以享受多线程处理的优势。

OpenCV 的一个目标是提供易于使用的计算机视觉接口,从而帮助人们快速建立精巧的视觉应用。

OpenCV 库包含从计算机视觉各个领域衍生出来的 500 多个函数,包括工业产品质量检验、医学图像处理、安保领域、交互操作、相机校正、双目视觉以及机器人学。

因为计算机视觉和机器学习经常在一起使用,所以 OpenCV 也包含一个完备的、具有通用性的机器学习库(ML模块)。

这个子库聚焦于统计模式识别以及聚类。ML 模块对 OpenCV 的核心任务(计算机视觉)相当有用,但是这个库也足够通用,可以用于任意机器学习问题。


2.OpenCV安装

pip install opencv-python


pip install opencv-contrib-python


3.操作目录说明


微信图片_20220429125548.png


上面的目录和名称,OpenCV小白千万不要改变。


4.代码实现


'''
author : zhaofeng092
data : 2020.1.6
goal : OpenCV人脸识别Demo
'''
# # -*- coding:utf-8 -*-
import cv2
import os
import numpy as np
# 检测人脸
def detect_face(img):
    # 将测试图像转换为灰度图像,因为opencv人脸检测器需要灰度图像
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 加载OpenCV人脸检测分类器Haar
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    # 检测多尺度图像,返回值是一张脸部区域信息的列表(x,y,宽,高)
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5)
    print(faces)
    # 如果未检测到面部,则返回原始图像
    if (len(faces) == 0):
        return None, None
    # 目前假设只有一张脸,xy为左上角坐标,wh为矩形的宽高
    (x, y, w, h) = faces[0]
    # 返回图像的正面部分
    return gray[y:y + w, x:x + h], faces[0]
# 该函数将读取所有的训练图像,从每个图像检测人脸并将返回两个相同大小的列表,分别为脸部信息和标签
def prepare_training_data(data_folder_path):
    # 获取数据文件夹中的目录(每个主题的一个目录)
    dirs = os.listdir(data_folder_path)
    # 两个列表分别保存所有的脸部和标签
    faces = []
    labels = []
    # 浏览每个目录并访问其中的图像
    for dir_name in dirs:
        # dir_name(str类型)即标签
        label = int(dir_name)
        # 建立包含当前主题主题图像的目录路径
        subject_dir_path = data_folder_path + "/" + dir_name
        # 获取给定主题目录内的图像名称
        subject_images_names = os.listdir(subject_dir_path)
        # 浏览每张图片并检测脸部,然后将脸部信息添加到脸部列表faces[]
        for image_name in subject_images_names:
            # 建立图像路径
            image_path = subject_dir_path + "/" + image_name
            # 读取图像
            image = cv2.imread(image_path)
            # 显示图像0.1s
            cv2.imshow("Training on image...", image)
            cv2.waitKey(100)
            # 检测脸部
            face, rect = detect_face(image)
            # 我们忽略未检测到的脸部
            if face is not None:
                # 将脸添加到脸部列表并添加相应的标签
                faces.append(face)
                labels.append(label)
    cv2.waitKey(1)
    cv2.destroyAllWindows()
    # 最终返回值为人脸和标签列表
    return faces, labels
# 调用prepare_training_data()函数
faces, labels = prepare_training_data("training_data")
# 创建LBPH识别器并开始训练,当然也可以选择Eigen或者Fisher识别器
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.train(faces, np.array(labels))
# 根据给定的(x,y)坐标和宽度高度在图像上绘制矩形
def draw_rectangle(img, rect):
    (x, y, w, h) = rect
    cv2.rectangle(img, (x, y), (x + w, y + h), (128, 128, 0), 2)
# 根据给定的(x,y)坐标标识出人名
def draw_text(img, text, x, y):
    cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (128, 128, 0), 2)
# 建立标签与人名的映射列表(标签只能为整数)
subjects = ["jay zhou", "another zhou"]
# 此函数识别传递的图像中的人物并在检测到的脸部周围绘制一个矩形及其名称
def predict(test_img):
    # 生成图像的副本,这样就能保留原始图像
    img = test_img.copy()
    # 检测人脸
    face, rect = detect_face(img)
    # 预测人脸
    label = face_recognizer.predict(face)
    # 获取由人脸识别器返回的相应标签的名称
    label_text = subjects[label[0]]
    # 在检测到的脸部周围画一个矩形
    draw_rectangle(img, rect)
    # 标出预测的名字
    draw_text(img, label_text, rect[0], rect[1] - 5)
    # 返回预测的图像
    return img
# 加载测试图像
test_img1 = cv2.imread("test_data/test1.jpg")
test_img2 = cv2.imread("test_data/test2.jpg")
# 执行预测
predicted_img1 = predict(test_img1)
predicted_img2 = predict(test_img2)
# 显示两个图像
cv2.imshow(subjects[0], predicted_img1)
cv2.imshow(subjects[1], predicted_img2)
cv2.waitKey(0)
cv2.destroyAllWindows()


结果:


微信图片_20220429125637.jpg

相关文章
|
4天前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
57 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
3月前
|
人工智能 数据安全/隐私保护 Python
小红书图文生成器,小红书AI图文生成工具,python版本软件
Pillow库自动生成符合平台尺寸要求的配图7;3)利用Playwright实现自动化发布流程6。
|
5天前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
82 7
|
5月前
|
人工智能 自然语言处理 数据可视化
中国版“Manus”开源?AiPy:用Python重构AI生产力的通用智能体
AiPy是LLM大模型+Python程序编写+Python程序运行+程序可以控制的一切。
|
2月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
437 1
|
7月前
|
人工智能 计算机视觉
HarmonyOS NEXT AI基础视觉服务-人脸识别
这是一个基于AI基础视觉服务的人脸识别案例,通过调用设备相册选择图片,利用MediaLibraryKit、ImageKit和CoreVisionKit等模块完成图像处理与人脸检测,并展示结构化结果。核心功能包括:相册访问授权、图像数据转换、人脸位置及特征点检测,最终以弹窗形式输出检测信息。代码涵盖模块导入、功能实现与UI构建,适合学习AI视觉应用开发流程。
|
3月前
|
数据采集 人工智能 API
推荐一款Python开源的AI自动化工具:Browser Use
Browser Use 是一款基于 Python 的开源 AI 自动化工具,融合大型语言模型与浏览器自动化技术,支持网页导航、数据抓取、智能决策等操作,适用于测试、爬虫、信息提取等多种场景。
629 4
推荐一款Python开源的AI自动化工具:Browser Use
|
3月前
|
人工智能 测试技术 编译器
从 Python 演进探寻 AI 与云对编程语言的推动
Python 自 2008 年发布 3.0 版本以来,经历了持续演进与革新。十六年间,从 Python 3.0 到即将发布的 3.14,语言设计、性能优化、类库生态及虚拟机技术等方面均有显著提升。字符串处理、异步编程、类型系统等核心功能不断现代化,Faster CPython 和 JIT 编译技术推动运行效率飞跃。同时,AI、云计算等新兴技术成为其发展的重要驱动力。本文全面回顾了 Python 的演进历程,并展望未来发展方向。
102 2
|
5月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
330 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程

推荐镜像

更多