实战 | Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 实战 | Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台

1. 为什么要搭建性能监控平台?

本身带有聚合报告如下图所示:

这个报告有几个很明显的缺点:

中获取数据并以特定的模板进行展示

2、性能监控平台部署实践

本文的重点并不是介绍 Docker,所以不了解的小伙伴需要自己去学习一下基本的安装和操作,可参考之前发送的

1)首先去下载InfluxDB的镜像,下载很简单,直接pull就好,默认为下载最新的镜像:

$ docker pull influxdb

镜像,在访问8083端口时就可以看到网页端的展示,我这里用的是最新的,所以就没有啦:

$ docker run -d --name jmeter-influx -p 8083:8083 -p 8086:8086 influxdb

3)进入容器内部,创建名为jmeter的数据库:

容器


         

命令查看数据库创建成功


         

查看数据,这个时候应该是没有数据的:


         

脚本,往期文章有发布,本次就以此来进行测试结果演示。具体可参考之前发送的公众号文章。文章末尾的「往期回顾」第二篇文章即可阅读。

配置

2)主要配置说明:

所对应的:

3)运行验证

运行

中查看数据,发现类似下面的数据说明输入导入成功:

1)首先我们需要下载grafana的镜像:


         

2)启动一个grafana容器,将3000端口映射出来:


         

3)网页端访问locahost:3000验证部署成功

4)选择添加数据源

:

6)配置数据源

数据源创建成功时会有绿色的提示:

7)导入模板

  • 直接输入模板id号
  • 直接上传模板json文件
  • 直接输入模板json内容
    下面这两个是我尝试过的模板:

9)导入模板,我这里选择的是导入json文件的方式,导入后如下,配置好模板名称和对应的数据源,然后

即可

10)展示设置,首先选择我们创建的application

如果我们修改过表名,也就是在jmeter的Backend Listener的measurement配置(默认为jmeter),这个时候就需要去设置中进行修改(我这里使用的就是默认的,所以无需修改):

经过一系列的奋斗之后,该到了我们检验成果的时候了。使用 Docker + JMeter + InfluxDB + Grafana 到底可以搭建怎样的性能监控平台呢?相比较 JMeter 自带的监控平台,我们搭建的性能监控平台究竟有什么优势呢?接下来就是展示成果的时候啦!

Appium 官方说明文档:

http://appium.io/docs/en/writing-running-appium/finding-elements/

http://appium.io/docs/en/commands/element/find-elements/

Uiautomator2 源码路径:

https://github.com/appium/appium-uiautomator2-server/blob/master/app/src/main/java/io/appium/uiautomator2/handler/FindElement.java


原文链接

更多技术文章

相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
16天前
|
关系型数据库 应用服务中间件 PHP
实战~如何组织一个多容器项目docker-compose
本文介绍了如何使用Docker搭建Nginx、PHP和MySQL的环境。首先启动Nginx容器并查看IP地址,接着启动Alpine容器并安装curl测试连通性。通过`--link`方式或`docker-compose`配置文件实现服务间的通信。最后展示了Nginx配置文件和PHP代码示例,验证了各服务的正常运行。
43 3
实战~如何组织一个多容器项目docker-compose
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
99 7
|
2月前
|
Kubernetes Linux 开发者
深入探索容器化技术——Docker 的实战应用
深入探索容器化技术——Docker 的实战应用
91 0
|
2月前
|
存储 Cloud Native 开发者
深入探索容器化技术——Docker的实战应用
深入探索容器化技术——Docker的实战应用
41 0
|
2月前
|
存储 安全 Docker
Docker 的实战应用与优化策略
Docker 的实战应用与优化策略
38 0
|
2月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
278 3
|
8天前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
72 20
|
4天前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
30 7
|
10天前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
76 3
|
10天前
|
Prometheus 监控 前端开发
Grafana 安装配置教程,让你的 Prometheus 监控数据变得更美观
《Grafana安装配置教程,让你的Prometheus监控数据变得更美观》简介: Grafana是一个开源的度量分析与可视化工具,支持多种数据源(如Prometheus),提供丰富的可视化功能和警报机制。本文详细介绍了Grafana的安装、汉化方法及模板使用,帮助用户轻松创建美观、灵活的数据面板,并实现数据的协作与共享。通过Docker镜像、配置文件修改或替换前端页面等方式实现汉化,让用户更便捷地使用中文界面。此外,还提供了导入JSON格式模板的具体步骤,方便快速搭建仪表盘。
28 2