SA实战 ·《SpringCloud Alibaba实战》第9章-服务容错:服务雪崩与容错方案

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: SA实战 ·《SpringCloud Alibaba实战》第9章-服务容错:服务雪崩与容错方案

大家好,我是冰河~~

一不小心《SpringCloud Alibaba实战》专栏都更新到第9章了,再不上车就跟不上了,小伙伴们快跟上啊!

注意:本项目完整源码加入 冰河技术 知识星球即可获取,文末有优惠券。

在《SpringCloud Alibaba实战》专栏前面的文章中,我们实现了用户微服务、商品微服务和订单微服务之间的远程调用,并且实现了服务调用的负载均衡。但是,现在系统中存在着一个很明显的问题,那就是如果系统的并发量上来后,系统并没有容错的能力,这可能会导致系统不可用或者直接宕机,所以,我们的系统需要支持容错的能力。

本文主要内容如下所示。

图片.png


并发对系统的影响

当一个系统的架构设计采用微服务架构模式时,会将庞大而复杂的业务拆分成一个个小的微服务,各个微服务之间以接口或者RPC的形式进行互相调用。在调用的过程中,就会涉及到网路的问题,再加上微服务自身的原因,例如很难做到100%的高可用等。如果众多微服务当中的某个或某些微服务出现问题,不可用或者宕机了,那么其他微服务调用这些微服务的接口时就会出现延迟。如果此时有大量请求进入系统,就会造成请求任务的大量堆积,甚至会造成整体服务的瘫痪。

压测说明

为了更加直观的说明当系统没有容错能力时,高并发、大流量场景对于系统的影响,我们在这里模拟一个并发的场景。在订单微服务shop-order的io.binghe.shop.order.controller.OrderController类中新增一个concurrentRequest()方法,源码如下所示。

@GetMapping(value = "/concurrent_request")
public String concurrentRequest(){
    log.info("测试业务在高并发场景下是否存在问题");
    return "binghe";
}

接下来,为了更好的演示效果,我们限制下Tomcat处理请求的最大并发数,在订单微服务shop-order的resources目录下的application.yml文件中添加如下配置。

server:
  port: 8080
  tomcat:
    max-threads: 20

限制Tomcat一次最多只能处理20个请求。接下来,我们就使用JMeter对 http://localhost:8080/order/submit_order 接口进行压测,由于订单微服务中没有做任何的容错处理,当对 http://localhost:8080/order/submit_order 接口的请求压力过大时,我们再访问http://localhost:8080/order/concurrent_request 接口时,会发现http://localhost:8080/order/concurrent_request 接口会受到并发请求的影响,访问很慢甚至根本访问不到。

压测实战

使用JMeter对 http://localhost:8080/order/submit_order 接口进行压测,JMeter的配置过程如下所示。

(1)打开JMeter的主界面,如下所示。

图片.pngimage.gif


(2)在JMeter中右键测试计划添加线程组,如下所示。

图片.pngimage.gif


(3)在JMeter中的线程组中配置并发线程数,如下所示。

图片.pngimage.gif


如上图所示,将线程数配置成50,Ramp-Up时间配置成0,循环次数为100。表示JMeter每次会在同一时刻向系统发送50个请求,发送100次为止。

(4)在JMeter中右键线程组添加HTTP请求,如下所示。

图片.pngimage.gif


(5)在JMeter中配置HTTP请求,如下所示。

图片.pngimage.gif


具体配置如下所示。

  • 协议:http
  • 服务器名称或IP:localhost
  • 端口号:8080
  • 方法:GET
  • 路径:/order/submit_order?userId=1001&productId=1001&count=1
  • 内容编码:UTF-8

(6)配置好JMeter后,点击JMeter上的绿色小三角开始压测,如下所示。

image.gif图片.png


点击后会弹出需要保存JMeter脚本的弹出框,根据实际需要点击保存即可。

图片.pngimage.gif


点击保存后,开始对 http://localhost:8080/order/submit_order 接口进行压测,在压测的过程中会发现订单微服务打印日志时,会比较卡顿,同时在浏览器或其他工具中访问http://localhost:8080/order/concurrent_request 接口会卡顿,甚至根本访问不到。

说明订单微服务中的某个接口一旦访问的并发量过高,其他接口也会受到影响,进而导致订单微服务整体不可用。为了说明这个问题,我们再来看看服务雪崩是个什么鬼。

服务雪崩

系统采用分布式或微服务的架构模式后,由于网络或者服务自身的问题,一般服务是很难做到100%高可用的。如果一个服务出现问题,就可能会导致其他的服务级联出现问题,这种故障性问题会在整个系统中不断扩散,进而导致服务不可用,甚至宕机,最终会对整个系统造成灾难性后果。

这里,小伙伴们可以对比冰河写的《一起进大厂系列》专栏中的《【高并发】面试官:讲讲什么是缓存穿透?击穿?雪崩?如何解决?》一文进行记忆。

为了最大程度的预防服务雪崩,组成整体系统的各个微服务需要支持服务容错的功能。

服务容错方案

服务容错在一定程度上就是尽最大努力来兼容错误情况的发生,因为在分布式和微服务环境中,不可避免的会出现一些异常情况,我们在设计分布式和微服务系统时,就要考虑到这些异常情况的发生,使得系统具备服务容错能力。

常见的服务错误方案包含:服务限流、服务隔离、服务超时、服务熔断和服务降级等。

服务限流

服务限流就是限制进入系统的流量,以防止进入系统的流量过大而压垮系统。其主要的作用就是保护服务节点或者集群后面的数据节点,防止瞬时流量过大使服务和数据崩溃(如前端缓存大量实效),造成不可用;还可用于平滑请求。

限流算法有两种,一种就是简单的请求总量计数,一种就是时间窗口限流(一般为1s),如令牌桶算法和漏牌桶算法就是时间窗口的限流算法。

服务隔离

服务隔离有点类似于系统的垂直拆分,就按照一定的规则将系统划分成多个服务模块,并且每个服务模块之间是互相独立的,不会存在强依赖的关系。如果某个拆分后的服务发生故障后,能够将故障产生的影响限制在某个具体的服务内,不会向其他服务扩散,自然也就不会对整体服务产生致命的影响。

互联网行业常用的服务隔离方式有:线程池隔离和信号量隔离。

服务超时

整个系统采用分布式和微服务架构后,系统被拆分成一个个小服务,就会存在服务与服务之间互相调用的现象,从而形成一个个调用链。形成调用链关系的两个服务中,主动调用其他服务接口的服务处于调用链的上游,提供接口供其他服务调用的服务处于调用链的下游。

服务超时就是在上游服务调用下游服务时,设置一个最大响应时间,如果超过这个最大响应时间下游服务还未返回结果,则断开上游服务与下游服务之间的请求连接,释放资源。

服务熔断

在分布式与微服务系统中,如果下游服务因为访问压力过大导致响应很慢或者一直调用失败时,上游服务为了保证系统的整体可用性,会暂时断开与下游服务的调用连接。这种方式就是熔断。

服务熔断一般情况下会有三种状态:关闭、开启和半熔断。

  • 关闭状态:服务一切正常,没有故障时,上游服务调用下游服务时,不会有任何限制。
  • 开启状态:上游服务不再调用下游服务的接口,会直接返回上游服务中预定的方法。
  • 半熔断状态:处于开启状态时,上游服务会根据一定的规则,尝试恢复对下游服务的调用。此时,上游服务会以有限的流量来调用下游服务,同时,会监控调用的成功率。如果成功率达到预期,则进入关闭状态。如果未达到预期,会重新进入开启状态。

服务降级

服务降级,说白了就是一种服务托底方案,如果服务无法完成正常的调用流程,就使用默认的托底方案来返回数据。例如,在商品详情页一般都会展示商品的介绍信息,一旦商品详情页系统出现故障无法调用时,会直接获取缓存中的商品介绍信息返回给前端页面。

关于星球

SpringCloud Alibaba实战》专栏一不小心就更新了9章了,如何更好的跟上冰河的节奏,一起搞定《SpringCloud Alibaba实战》呢?

最近,冰河创建了【冰河技术】知识星球,《SpringCloud Alibaba实战》专栏的源码获取方式会放到知识星球中,同时在微信上会创建专门的知识星球群,冰河会在知识星球上和星球群里解答球友的提问。

星球提供的服务

冰河整理了星球提供的一些服务,如下所示。

加入星球,你将获得:

1.学习SpringCloud Alibaba实战项目—从零开发微服务项目

2.学习高并发、大流量业务场景的解决方案,体验大厂真正的高并发、大流量的业务场景

3.学习进大厂必备技能:性能调优、并发编程、分布式、微服务、框架源码、中间件开发、项目实战

4.提供站点 https://binghe001.github.io 所有学习内容的指导、帮助

5.GitHub:https://github.com/binghe001/BingheGuide - 非常有价值的技术资料仓库,包括冰河所有的博客开放案例代码

6.可以发送你的简历到我的邮箱,提供简历批阅服务

7.提供技术问题、系统架构、学习成长、晋升答辩等各项内容的回答

8.定期的整理和分享出各类专属星球的技术小册、电子书、编程视频、PDF文件

9.定期组织技术直播分享,传道、授业、解惑,指导阶段瓶颈突破技巧

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
1月前
|
存储 数据可视化 Java
基于MicrometerTracing门面和Zipkin实现集成springcloud2023的服务追踪
Sleuth将会停止维护,Sleuth最新版本也只支持springboot2。作为替代可以使用MicrometerTracing在微服务中作为服务追踪的工具。
107 1
|
15天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
49 3
|
1月前
|
JSON SpringCloudAlibaba Java
Springcloud Alibaba + jdk17+nacos 项目实践
本文基于 `Springcloud Alibaba + JDK17 + Nacos2.x` 介绍了一个微服务项目的搭建过程,包括项目依赖、配置文件、开发实践中的新特性(如文本块、NPE增强、模式匹配)以及常见的问题和解决方案。通过本文,读者可以了解如何高效地搭建和开发微服务项目,并解决一些常见的开发难题。项目代码已上传至 Gitee,欢迎交流学习。
145 1
Springcloud Alibaba + jdk17+nacos 项目实践
|
1月前
|
Dubbo Java 应用服务中间件
Dubbo学习圣经:从入门到精通 Dubbo3.0 + SpringCloud Alibaba 微服务基础框架
尼恩团队的15大技术圣经,旨在帮助开发者系统化、体系化地掌握核心技术,提升技术实力,从而在面试和工作中脱颖而出。本文介绍了如何使用Dubbo3.0与Spring Cloud Gateway进行整合,解决传统Dubbo架构缺乏HTTP入口的问题,实现高性能的微服务网关。
|
2月前
|
人工智能 前端开发 Java
Spring Cloud Alibaba AI,阿里AI这不得玩一下
🏀闪亮主角: 大家好,我是JavaDog程序狗。今天分享Spring Cloud Alibaba AI,基于Spring AI并提供阿里云通义大模型的Java AI应用。本狗用SpringBoot+uniapp+uview2对接Spring Cloud Alibaba AI,带你打造聊天小AI。 📘故事背景: 🎁获取源码: 关注公众号“JavaDog程序狗”,发送“alibaba-ai”即可获取源码。 🎯主要目标:
100 0
|
2月前
|
Java API 对象存储
微服务魔法启动!Spring Cloud与Netflix OSS联手,零基础也能创造服务奇迹!
这段内容介绍了如何使用Spring Cloud和Netflix OSS构建微服务架构。首先,基于Spring Boot创建项目并添加Spring Cloud依赖项。接着配置Eureka服务器实现服务发现,然后创建REST控制器作为API入口。为提高服务稳定性,利用Hystrix实现断路器模式。最后,在启动类中启用Eureka客户端功能。此外,还可集成其他Netflix OSS组件以增强系统功能。通过这些步骤,开发者可以更高效地构建稳定且可扩展的微服务系统。
59 1
|
2月前
|
SpringCloudAlibaba API 开发者
新版-SpringCloud+SpringCloud Alibaba
新版-SpringCloud+SpringCloud Alibaba
|
3月前
|
资源调度 Java 调度
Spring Cloud Alibaba 集成分布式定时任务调度功能
定时任务在企业应用中至关重要,常用于异步数据处理、自动化运维等场景。在单体应用中,利用Java的`java.util.Timer`或Spring的`@Scheduled`即可轻松实现。然而,进入微服务架构后,任务可能因多节点并发执行而重复。Spring Cloud Alibaba为此发布了Scheduling模块,提供轻量级、高可用的分布式定时任务解决方案,支持防重复执行、分片运行等功能,并可通过`spring-cloud-starter-alibaba-schedulerx`快速集成。用户可选择基于阿里云SchedulerX托管服务或采用本地开源方案(如ShedLock)
129 1
|
3月前
|
人工智能 前端开发 Java
【实操】Spring Cloud Alibaba AI,阿里AI这不得玩一下(含前后端源码)
本文介绍了如何使用 **Spring Cloud Alibaba AI** 构建基于 Spring Boot 和 uni-app 的聊天机器人应用。主要内容包括:Spring Cloud Alibaba AI 的概念与功能,使用前的准备工作(如 JDK 17+、Spring Boot 3.0+ 及通义 API-KEY),详细实操步骤(涵盖前后端开发工具、组件选择、功能分析及关键代码示例)。最终展示了如何成功实现具备基本聊天功能的 AI 应用,帮助读者快速搭建智能聊天系统并探索更多高级功能。
1400 2
【实操】Spring Cloud Alibaba AI,阿里AI这不得玩一下(含前后端源码)
|
4月前
|
资源调度 Java 调度
Spring Cloud Alibaba 集成分布式定时任务调度功能
Spring Cloud Alibaba 发布了 Scheduling 任务调度模块 [#3732]提供了一套开源、轻量级、高可用的定时任务解决方案,帮助您快速开发微服务体系下的分布式定时任务。
14980 29
下一篇
无影云桌面