目录
- 简介
- Number的范围
- 区分位运算和算数运算
- 注意不要使用0作为除数
- 兼容C++的无符号整数类型
- NAN和INFINITY
- 不要使用float或者double作为循环的计数器
- BigDecimal的构建
- 类型转换问题
简介
java中可以被称为Number的有byte,short,int,long,float,double和char,我们在使用这些Nubmer的过程中,需要注意些什么内容呢?一起来看看吧。
Number的范围
每种Number类型都有它的范围,我们看下java中Number类型的范围:
考虑到我们最常用的int操作,虽然int的范围够大,但是如果我们在做一些int操作的时候还是可能超出int的范围。
超出了int范围会发送什么事情呢?看下面的例子:
public void testIntegerOverflow(){ System.out.println(Integer.MAX_VALUE+1000); }
运行结果:-2147482649。
很明显Integer.MAX_VALUE+1000将会超出Integer的最大值范围,但是我们没有得到异常提醒,反而得到了一个错误的结果。
正确的操作是如果我们遇到了Overflow的问题,需要抛出异常:ArithmeticException。
怎么防止这种IntegerOverflow的问题呢?一般来讲,我们有下面几种方式。
- 第一种方式:在做Integer操作之前,进行预判断是否超出范围:
举个例子:
static final int safeAdd(int left, int right) { if (right > 0 ? left > Integer.MAX_VALUE - right : left < Integer.MIN_VALUE - right) { throw new ArithmeticException("Integer overflow"); } return left + right; }
上面的例子中,我们需要进行两个整数相加操作,在相加之前,我们需要进行范围的判断,从而保证计算的安全性。
- 第二种方式:使用Math的addExact和multiplyExact方法:
Math的addExact和multiplyExact方法已经提供了Overflow的判断,我们看下addExact的实现:
public static int addExact(int x, int y) { int r = x + y; // HD 2-12 Overflow iff both arguments have the opposite sign of the result if (((x ^ r) & (y ^ r)) < 0) { throw new ArithmeticException("integer overflow"); } return r; }
看下怎么使用:
public int addUseMath(int a, int b){ return Math.addExact(a,b); }
- 第三种方式:向上转型
既然超出了Integer的范围,那么我们可以用范围更大的long来存储数据。
public static long intRangeCheck(long value) { if ((value < Integer.MIN_VALUE) || (value > Integer.MAX_VALUE)) { throw new ArithmeticException("Integer overflow"); } return value; } public int addUseUpcasting(int a, int b){ return (int)intRangeCheck((long)a+(long)b); }
上面的例子中,我们将a+b转换成了两个long相加,从而保证不溢出范围。
然后进行一次范围比较,从而判断相加之后的结果是否仍然在整数范围内。
- 第四种方式:使用BigInteger
我们可以使用BigInteger.valueOf(a)将int转换成为BigInteger,再进行后续操作:
public int useBigInteger(int a, int b){ return BigInteger.valueOf(a).add(BigInteger.valueOf(b)).intValue(); }
区分位运算和算数运算
我们通常会对Integer进行位运算或者算数运算。虽然可以进行两种运算,但是最好不要将两种运算同时进行,这样会造成混淆。
比如下面的例子:
x += (x << 1) + 1;
上面的例子是想做什么呢?其实它是想将3x+1的值赋给x。
但是这样写出来让人很难理解,所以我们需要避免这样实现。
再看下面的一个例子:
public void testBitwiseOperation(){ int i = -10; System.out.println(i>>>2); System.out.println(i>>2); System.out.println(i/4); }
本来我们想做的是将i除以4,结果发现只有最后一个才是我们要的结果。
我们来解释一下,第一个i>>>2是逻辑右移,将会把最左边的填充成0,所以得出的结果是一个正值1073741821。
第二个i>>2是算数右移,最左边的还是会填充成1,但是会向下取整,所以得出结果是-3.
直接使用i/4,我们是向上取整,所以得出结果是-2.
注意不要使用0作为除数
我们在使用变量作为除数的时候,一定要注意先判断是否为0.
兼容C++的无符号整数类型
在java中只有16位的char表示的是无符号整数,而int实际上表示的是带符号的整数。
而在C或者C++中是可以直接表示无符号的整数的,那么,如果我们有一个32位的无符号整数,该怎么用java来处理呢?
public int readIntWrong(DataInputStream is) throws IOException { return is.readInt(); }
看上面的例子,我们从Stream中读取一个int值,如果是一个32位的无符号整数,那么读出来int就变成了有符号的负整数,这和我们的期望是相符的。
考虑一下,long是64位的,我们是不是可以使用long来表示32位的无符号整数呢?
public long readIntRight(DataInputStream is) throws IOException{ return is.readInt() & 0xFFFFFFFFL; // Mask with 32 one-bits }
看上面的例子,我们返回的是long,如果将32位的int转换成为64位的long,会自动根据符号位进行补全。
所以这时候我们需要和0xFFFFFFFFL进行mask操作,将高32位重置为0.
NAN和INFINITY
在整型运算中,除数是不能为0的,否则直接运行异常。但是在浮点数运算中,引入了NAN和INFINITY的概念,我们来看一下Double和Float中的定义。
public static final double POSITIVE_INFINITY = 1.0 / 0.0; public static final double NEGATIVE_INFINITY = -1.0 / 0.0; public static final double NaN = 0.0d / 0.0;
public static final float POSITIVE_INFINITY = 1.0f / 0.0f; public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; public static final float NaN = 0.0f / 0.0f;
1除以0就是INFINITY,而0除以0就是NaN。
接下来,我们看一下NAN和INFINITY的比较:
public void compareInfinity(){ System.out.println(Double.POSITIVE_INFINITY == Double.POSITIVE_INFINITY); }
运行结果是true。
public void compareNaN(){ System.out.println(Double.NaN == Double.NaN); }
运行结果是false。
可以看到NaN和NaN相比是false。
那么我们怎么比较NaN呢?
别急,Double提供了一个isNaN方法,我们可以这样使用:
System.out.println(Double.isNaN(Double.NaN));
接下来我们看一个在代码中经常会用到的一个Double解析:
public void incorrectParse(String userInput){ double val = 0; try { val = Double.valueOf(userInput); } catch (NumberFormatException e) { } //do something for val }
这段代码有没有问题?咋看下好像没有问题,但是,如果我们的userInput是NaN,Infinity,或者-Infinity,Double.valueOf是可以解析得到结果的。
public void testNaN(){ System.out.println(Double.valueOf("NaN")); System.out.println(Double.valueOf("Infinity")); System.out.println(Double.valueOf("-Infinity")); }
运行输出:
NaN Infinity -Infinity
所以,我们还需要额外去判断NaN和Infinity:
public void correctParse(String userInput){ double val = 0; try { val = Double.valueOf(userInput); } catch (NumberFormatException e) { } if (Double.isInfinite(val)){ // Handle infinity error } if (Double.isNaN(val)) { // Handle NaN error } //do something for val }
不要使用float或者double作为循环的计数器
考虑下面的代码:
for (float x = 0.1f; x <= 1.0f; x += 0.1f) { System.out.println(x); }
上面的代码有什么问题呢?
我们都知道java中浮点数是不准确的,但是不一定有人知道为什么不准确。
这里给大家解释一下,计算机中所有与的数都是以二进制存储的,我们以0.6为例。
0.6转成为二进制格式是乘2取整,0.6x2=1.2,取整剩余0.2,继续上面的步骤0.2x2=0.4,0.4x2=0.8,0.8x2=1.6,取整剩余0.6,产生了一个循环。
所以0.6的二进制格式是.1001 1001 1001 1001 1001 1001 1001 ... 无限循环下去。
所以,有些小数是无法用二进制精确的表示的,最终导致使用float或者double作为计数器是不准的。
BigDecimal的构建
为了解决float或者Double计算中精度缺失的问题,我们通常会使用BigDecimal。
那么在使用BigDecimal的时候,请注意一定不要从float构建BigDecimal,否则可能出现意想不到的问题。
public void getFromFloat(){ System.out.println(new BigDecimal(0.1)); }
上面的代码,我们得到的结果是:
0.1000000000000000055511151231257827021181583404541015625。
这是因为二进制无法完美的展示所有的小数。
所以,我们需要从String来构建BigDecimal:
public void getFromString(){ System.out.println(new BigDecimal("0.1")); }
类型转换问题
在java中各种类型的Number可以互相进行转换:
比如:
- short to byte or char
- char to byte or short
- int to byte, short, or char
- long to byte, short, char, or int
- float to byte, short, char, int, or long
- double to byte, short, char, int, long, or float
或者反向:
- byte to short, int, long, float, or double
- short to int, long, float, or double
- char to int, long, float, or double
- int to long, float, or double
- long to float or double
- float to double
从大范围的类型转向小范围的类型时,我们要考虑是否超出转换类型范围的情况:
public void intToByte(int i){ if ((i < Byte.MIN_VALUE) || (i > Byte.MAX_VALUE)) { throw new ArithmeticException("Value is out of range"); } byte b = (byte) i; }
比如上面的例子中,我们将int转换成为byte,那么在转换之前,需要先判断int是否超出了byte的范围。
同时我们还需要考虑到精度的切换,看下面的例子:
public void intToFloat(){ System.out.println(subtraction(1111111111,1111111111)); } public int subtraction(int i , float j){ return i - (int)j; }
结果是多少呢?
答案不是0,而是-57。
为什么呢?
因为这里我们做了两次转换,第一次从1111111111转换到float,float虽然有32位,但是只有23位是存放真正的数值的,1位是符号位,剩下的8位是指数位。
所以从1111111111转换到float发送了精度丢失。
我们可以把subtraction方法修改一下,首先判断float的范围,如果超出了23bit的表示范围,则说明发送了精度丢失,我们需要抛出异常:
public int subtraction(int i , float j){ System.out.println(j); if ((j > 0x007fffff) || (j < -0x800000)) { throw new ArithmeticException("Insufficient precision"); } return i - (int)j; }
当然还有一种办法,我们可以用精度更高的double来做转换,double有52位来存放真正的数据,所以足够了。
public int subtractionWithDouble(int i , double j){ System.out.println(j); return i - (int)j; }