Google Earth Engine——国防气象计划(DMSP)的运行线路扫描系统(OLS)具有独特的能力来探测夜间的可见和近红外(VNIR)发射源。包含了全球夜间的灯光图像

简介: Google Earth Engine——国防气象计划(DMSP)的运行线路扫描系统(OLS)具有独特的能力来探测夜间的可见和近红外(VNIR)发射源。包含了全球夜间的灯光图像

The Defense Meteorological Program (DMSP) Operational Line-Scan System (OLS) has a unique capability to detect visible and near-infrared (VNIR) emission sources at night.

This collection contains global nighttime lights images with no sensor saturation. The sensor is typically operated at a high-gain setting to enable the detection of moonlit clouds. However, with six bit quantization and limited dynamic range, the recorded data are saturated in the bright cores of urban centers. A limited set of observations at low lunar illumination were obtained where the gain of the detector was set significantly lower than its typical operational setting (sometimes by a factor of 100). Sparse data acquired at low-gain settings were combined with the operational data acquired at high-gain settings to produce the set of global nighttime lights images with no sensor saturation. Data from different satellites were merged and blended into the final product in order to gain maximum coverage. For more information, see this readme file from the provider.

Image and data processing by NOAA's National Geophysical Data Center. DMSP data collected by US Air Force Weather Agency.


国防气象计划(DMSP)的运行线路扫描系统(OLS)具有独特的能力来探测夜间的可见和近红外(VNIR)发射源。

这个集合包含了全球夜间的灯光图像,没有传感器的饱和度。该传感器通常在高增益设置下运行,以实现对月光云的探测。然而,由于六位量化和有限的动态范围,记录的数据在城市中心的明亮核心区域是饱和的。在月球低照度下获得了一组有限的观测数据,其中探测器的增益设置大大低于其典型的操作设置(有时是100倍)。在低增益设置下获得的稀疏数据与在高增益设置下获得的运行数据相结合,产生了一组没有传感器饱和度的全球夜间灯光图像。来自不同卫星的数据被合并并混合到最终产品中,以获得最大的覆盖范围。欲了解更多信息,请参见供应商提供的这份自述文件。

图像和数据处理由NOAA的国家地球物理资料中心进行。DMSP数据由美国空军气象局收集。

Dataset Availability

1996-03-16T00:00:00 - 2011-07-31T00:00:00

Dataset Provider

Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines

Collection Snippet

ee.ImageCollection("NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4")

Resolution

927.67 meters

Bands Table

Name Description Min* Max*
avg_vis Average digital band numbers from observations with cloud-free light detection. 0 6060.6
cf_cvg Cloud-free coverages, the total number of observations that went into each 30-arc second grid cell. This image can be used to identify areas with low numbers of observations where the quality is reduced. 0 175


* = Values are estimated

数据说明:

NOAA data, information, and products, regardless of the method of delivery, are not subject to copyright and carry no restrictions on their subsequent use by the public. Once obtained, they may be put to any lawful use. The forgoing data is in the public domain and is being provided without restriction on use and distribution.

代码:

var dataset = ee.ImageCollection('NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4')
                  .filter(ee.Filter.date('2010-01-01', '2010-12-31'));
var nighttimeLights = dataset.select('avg_vis');
var nighttimeLightsVis = {
  min: 3.0,
  max: 60.0,
};
Map.setCenter(7.82, 49.1, 4);
Map.addLayer(nighttimeLights, nighttimeLightsVis, 'Nighttime Lights');


相关文章
|
10月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
3095 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
10月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
337 0
|
6月前
|
SQL 监控 大数据
通过Google Dataflow,我们能够构建一个高效、可扩展且易于维护的实时数据处理系统
【9月更文挑战第7天】随着大数据时代的到来,企业对高效数据处理的需求日益增加,特别是在实时分析和事件驱动应用中。Google Dataflow作为Google Cloud Platform的一项服务,凭借其灵活、可扩展的特点,成为实时大数据处理的首选。本文将介绍Dataflow的基本概念、优势,并通过一个电商日志分析的实际案例和示例代码,展示如何构建高效的数据处理管道。Dataflow不仅支持自动扩展和高可用性,还提供了多种编程语言支持和与GCP其他服务的紧密集成,简化了整个数据处理流程。通过Dataflow,企业可以快速响应业务需求,优化用户体验。
171 3
|
10月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
817 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
10月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
157 0
|
10月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
144 0
|
10月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
216 0
|
10月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
110 0
|
10月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
409 0
|
10月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
187 0