Google Earth Engine——AVHRR探路者5.3版海面温度数据集(PFV53)是由NOAA国家海洋学数据中心和迈阿密大学罗森斯蒂尔海洋与大气科学学院合作制作的全球每日两次的4公里数据

简介: Google Earth Engine——AVHRR探路者5.3版海面温度数据集(PFV53)是由NOAA国家海洋学数据中心和迈阿密大学罗森斯蒂尔海洋与大气科学学院合作制作的全球每日两次的4公里数据

The AVHRR Pathfinder Version 5.3 Sea Surface Temperature dataset (PFV53) is a collection of global, twice-daily 4km sea surface temperature data produced in a partnership by the NOAA National Oceanographic Data Center and the University of Miami's Rosenstiel School of Marine and Atmospheric Science. PFV53 was computed from data from the AVHRR instruments on board NOAA's polar orbiting satellite series using an entirely modernized system based on SeaDAS. PFV53 data are nearly 100% compliant with the GHRSST Data Specification Version 2.0 for L3C products and only deviate from that standard in that 'sses_bias', 'sses_standard_deviation', and 'sst_dtime' variables are empty and hence not included into EE assets. PFV53 data were collected through the operational periods of the NOAA-7 through NOAA-19 Polar Operational Environmental Satellites (POES), and are available from 1981 to 2014. Additional information is available at the [NOAA Pathfinder site] (NODC Pathfinder SST Data).

Additional band details can be found in the [Tech Specs] (https://data.nodc.noaa.gov/pathfinder/Version5.2/GDS_TechSpecs_v2.0.pdf) page.

These data were provided by GHRSST and the US NOAA National Centers for Environmental Information (NCEI). This project was supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites.


AVHRR探路者5.3版海面温度数据集(PFV53)是由NOAA国家海洋学数据中心和迈阿密大学罗森斯蒂尔海洋与大气科学学院合作制作的全球每日两次的4公里海面温度数据集。PFV53是从NOAA极地轨道卫星系列上的AVHRR仪器的数据中计算出来的,使用的是基于SeaDAS的一个完全现代化的系统。PFV53数据几乎100%符合L3C产品的GHRSST数据规范2.0版,仅在 "ses_bias"、"ses_standard_deviation "和 "st_dtime "变量为空,因此不包括在EE资产中。PFV53数据是通过NOAA-7到NOAA-19极地运行环境卫星(POES)的运行期收集的,从1981年到2014年都有。其他信息可在[NOAA探路者网站](https://www.nodc.noaa.gov/satellitedata/pathfinder4km53/)获得。

更多的波段细节可以在[技术规格](https://data.nodc.noaa.gov/pathfinder/Version5.2/GDS_TechSpecs_v2.0.pdf)页面找到。

这些数据由GHRSST和美国NOAA国家环境信息中心(NCEI)提供。这个项目得到了NOAA气候数据记录(CDR)计划对卫星的部分支持。

Dataset Availability

1981-08-24T00:00:00 - 2020-12-30T00:00:00

Dataset Provider

NOAA

Collection Snippet

ee.ImageCollection("NOAA/CDR/SST_PATHFINDER/V53")

Resolution

4000 meters

Bands Table

Name Description Min Max Units Scale Offset
sea_surface_temperature Skin temperature of the ocean K 0.01 273.15
dt_analysis The difference between this SST and the previous day's. K 0.1 0
wind_speed These wind speeds were created by NCEP-DOE Atmospheric Model Intercomparison Project (AMIP-II) reanalysis (R-2) and represent winds at 10 metres above the sea surface. m/s 0 0
sea_ice_fraction Sea ice concentration data are taken from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSISAF) [Global Daily Sea Ice Concentration Reprocessing Data Set accession.nodc.noaa.gov/0068294](https://data.cnra.ca.gov/dataset/global-daily-sea-ice-concentration-reprocessing-data-set-for-1978-2007-from-the-eumetsat-ocean-) when these data are available. The data are reprojected and interpolated from their original polar stereographic projection at 10km spatial resolution to the 4km Pathfinder Version 5.3 grid. When the OSISAF data are not available for both hemispheres on a given day, the sea ice concentration data are taken from the sea_ice_fraction variable found in the L4 GHRSST DailyOI SST product from NOAA/NCDC, and are interpolated from the 25km DailyOI grid to the 4km Pathfinder Version 5.3 grid. 0.01 0
aerosol_dynamic_indicator Aerosol optical thickness (100 KM) data are taken from the CLASS AERO100 products, which are created from AVHRR channel 1 optical thickness retrievals from AVHRR global area coverage (GAC) data. The aerosol optical thickness measurements are interpolated from their original 1 degree x 1 degree resolution to the 4km Pathfinder Version 5.3 grid. 0.01 1.1
quality_level Note, the native Pathfinder processing system returns quality levels ranging from 0 to 7 (7 is best quality; -1 represents missing data) and has been converted to the extent possible into the six levels required by the GDS2 (ranging from 0 to 5, where 5 is best). Below is the conversion table: - GDS2 required quality_level 5 = native Pathfinder quality level 7 == best_quality - GDS2 required quality_level 4 = native Pathfinder quality level 4-6 == acceptable_quality - GDS2 required quality_level 3 = native Pathfinder quality level 2-3 == low_quality - GDS2 required quality_level 2 = native Pathfinder quality level 1 == worst_quality - GDS2 required quality_level 1 = native Pathfinder quality level 0 = bad_data - GDS2 required quality_level 0 = native Pathfinder quality level -1 = missing_data The original Pathfinder quality level is recorded in the optional variable pathfinder_quality_level. 0 5 0 0
pathfinder_quality_level The native Pathfinder processing system quality levels, ranging from 0 to 7, where 0 is worst and 7 is best. 0 7 0 0
l2p_flags Used to specify the type of input SST data and pass through native flags from the input L2 SST data set. 0 0
l2p_flags Bitmask
  • Bit 0: Type of input SST data.
    • 0: Always set to zero to indicate infrared data.
  • Bit 1: Land
    • 0: Input pixel is classified as over ocean.
    • 1: Pixel area is ≥ 50% land as determined by rasterizing the Global Self-consistent Hierarchical High-resolution Shoreline (GSHHS) Database from the NOAA National Geophysical Data Center.
  • Bit 2: Sea ice fraction
    • 0: 'sea_ice_fraction' is less than 0.15.
    • 1: 'sea_ice_fraction' is 0.15 or greater.
  • Bit 3: Lake
    • 0: Pixel area is < 50% lake covered.
    • 1: Pixel area is ≥ 50% lake covered as determined from rasterizing US World Wildlife Fund's Global Lakes and Wetlands Database.
  • Bit 4: River
    • 0: Pixel area is < 50% river covered.
    • 1: Pixel area is ≥ 50% river covered as determined form rasterizing US World Wildlife Fund's Global Lakes and Wetlands Database.


影像属性:

Name Type Description
aerosol_dynamic_indicator_offset Double Aerosol dynamic indicator offset
aerosol_dynamic_indicator_scale Double Aerosol dynamic indicator scale
date_created Double Date created
day_or_night String Day or night
dt_analysis_scale Double Dt analysis scale
orbit_node String Orbit node
platform String Platform
principal_day_for_collated_orbits String Principal day for collated orbits
principal_year_for_collated_orbits Double Principal year for collated orbits
sea_ice_fraction_scale Double Sea ice fraction scale
sea_surface_temperature_offset Double Sea surface temperature offset
sea_surface_temperature_scale Double Sea surface temperature scale
uuid String Universal unique identifier


数据说明:

NOAA data, information, and products, regardless of the method of delivery, are not subject to copyright and carry no restrictions on their subsequent use by the public. Once obtained, they may be put to any lawful use. The forgoing data is in the public domain and is being provided without restriction on use and distribution. For more information see the 'constraints' section in [https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:AVHRR_Pathfinder-NCEI-L3C-v5.3] (https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:AVHRR_Pathfinder-NCEI-L3C-v5.3).

引用:

Baker-Yeboah, S., K. Saha, D. Zhang, K. S. Casey, R. Evans, and K. A. Kilpatrick (2016). 'Pathfinder Version 5.3 AVHRR Sea Surface Temperature Climate Data Record', Fall AGU 2016 Poster (manuscript in progress)

代码:

var dataset = ee.ImageCollection('NOAA/CDR/SST_PATHFINDER/V53')
                  .filter(ee.Filter.date('2014-05-01', '2014-05-14'));
var seaSurfaceTemperature = dataset.select('sea_surface_temperature');
var visParams = {
  min: 0.0,
  max: 2500.0,
  palette: [
    '030d81', '0519ff', '05e8ff', '11ff01', 'fbff01', 'ff9901', 'ff0000',
    'ad0000'
  ],
};
Map.setCenter(-121.99, -2.11, 2);
Map.addLayer(seaSurfaceTemperature, visParams, 'Sea Surface Temperature');


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2541 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
226 0
|
7月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
115 0
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
93 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
153 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
77 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
269 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
135 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
124 0
下一篇
无影云桌面