Google Earth Engine ——GLDAS-2.0是用更新的普林斯顿全球气象强迫数据集基于MODIS的地表参数数据集

简介: Google Earth Engine ——GLDAS-2.0是用更新的普林斯顿全球气象强迫数据集基于MODIS的地表参数数据集

Global Land Data Assimilation System (GLDAS) ingests satellite and ground-based observational data products. Using advanced land surface modeling and data assimilation techniques, it generates optimal fields of land surface states and fluxes.

GLDAS-2.0 is one of two components of the GLDAS Version 2 (GLDAS-2) dataset, the second being GLDAS-2.1. GLDAS-2.0 is reprocessed with the updated Princeton Global Meteorological Forcing Dataset (Sheffield et al., 2006) and upgraded Land Information System Version 7 (LIS-7). It covers the period 1948-2010, and will be extended to more recent years as corresponding forcing data become available.

The model simulation was initialized on January 1, 1948, using soil moisture and other state fields from the LSM climatology for that day of the year. The simulation used the common GLDAS datasets for land cover (MCD12Q1: Friedl et al., 2010), land water mask (MOD44W: Carroll et al., 2009), soil texture (Reynolds, 1999), and elevation (GTOPO30). The MODIS based land surface parameters are used in the current GLDAS-2.x products while the AVHRR base parameters were used in GLDAS-1 and previous GLDAS-2 products (prior to October 2012).

Documentation:

  • Readme
  • How-to
  • 全球陆地数据同化系统(GLDAS)摄取了卫星和地面观测数据产品。它使用先进的陆地表面建模和数据同化技术,生成陆地表面状态和通量的最佳领域。
    GLDAS-2.0是GLDAS第二版(GLDAS-2)数据集的两个组成部分之一,第二个是GLDAS-2.1。GLDAS-2.0是用更新的普林斯顿全球气象强迫数据集(Sheffield等人,2006)和升级的土地信息系统第7版(LIS-7)重新处理的。它涵盖了1948-2010年,并将随着相应的强迫数据的获得而扩展到更近的年份。
    模型模拟在1948年1月1日初始化,使用当年LSM气候学中的土壤水分和其他状态场。模拟使用了通用的GLDAS数据集,用于土地覆盖(MCD12Q1:Friedl等人,2010)、土地水分掩蔽(MOD44W:Carroll等人,2009)、土壤纹理(Reynolds,1999)和海拔(GTOPO30)。目前的GLDAS-2.x产品使用的是基于MODIS的地表参数,而GLDAS-1和之前的GLDAS-2产品(2012年10月之前)使用的是AVHRR基础参数。
    提供者注:扩展名为_tavg的是过去3小时的平均变量,扩展名为'_acc'的是过去3小时的累积变量,扩展名为'_inst'的是瞬时变量,扩展名为_f的是强制变量。
    GES DISC Hydrology Documentation


Provider's Note: the names with extension _tavg are variables averaged over the past 3-hours, the names with extension '_acc' are variables accumulated over the past 3-hours, the names with extension '_inst' are instantaneous variables, and the names with '_f' are forcing variables.

Dataset Availability

1948-01-01T00:00:00 - 2010-12-31T00:00:00

Dataset Provider

NASA GES DISC at NASA Goddard Space Flight Center

Collection Snippet

ee.ImageCollection("NASA/GLDAS/V20/NOAH/G025/T3H")

Resolution

27830 meters

Bands Table

Name Description Min* Max* Units
Albedo_inst Albedo 4.99 82.25 %
AvgSurfT_inst Average surface skin temperature 194.55 351.63 K
CanopInt_inst Plant canopy surface water 0 0.5 kg/m^2
ECanop_tavg Canopy water evaporation 0 671.88 W/m^2
ESoil_tavg Direct evaporation from bare soil 0 592.64 W/m^2
Evap_tavg Evapotranspiration 0 0.0002 kg/m^2/s
LWdown_f_tavg Downward long-wave radiation flux 44.62 561.46 W/m^2
Lwnet_tavg Net long-wave radiation flux -359.07 130.59 W/m^2
PotEvap_tavg Potential evaporation rate -241.88 1513.78 W/m^2
Psurf_f_inst Pressure 47824.13 109036.41 Pa
Qair_f_inst Specific humidity 0 0.06 kg/kg
Qg_tavg Heat flux -517.58 485.13 W/m^2
Qh_tavg Sensible heat net flux -872.46 797.71 W/m^2
Qle_tavg Latent heat net flux -243.71 716.69 W/m^2
Qs_acc Storm surface runoff 0 131.39 kg/m^2
Qsb_acc Baseflow-groundwater runoff 0 42.3 kg/m^2
Qsm_acc Snow melt 0 27.58 kg/m^2
Rainf_f_tavg Total precipitation rate 0 0.01 kg/m^2/s
Rainf_tavg Rain precipitation rate 0 0.01 kg/m^2/s
RootMoist_inst Root zone soil moisture 2 943.52 kg/m^2
SWE_inst Snow depth water equivalent 0 117283.5 kg/m^2
SWdown_f_tavg Downward short-wave radiation flux 0 1329.22 W/m^2
SnowDepth_inst Snow depth 0 293.2 m
Snowf_tavg Snow precipitation rate 0 0.004 kg/m^2/s
SoilMoi0_10cm_inst Soil moisture 1.99 47.59 kg/m^2
SoilMoi10_40cm_inst Soil moisture 5.99 142.8 kg/m^2
SoilMoi40_100cm_inst Soil moisture 11.99 285.6 kg/m^2
SoilMoi100_200cm_inst Soil moisture 20 476 kg/m^2
SoilTMP0_10cm_inst Soil temperature 218.75 329.55 K
SoilTMP10_40cm_inst Soil temperature 227.3 317.08 K
SoilTMP40_100cm_inst Soil temperature 232.59 313.47 K
SoilTMP100_200cm_inst Soil temperature 234.5 311.86 K
Swnet_tavg Net short wave radiation flux 0 1128.86 W/m^2
Tair_f_inst Air temperature 197.03 326.2 K
Tveg_tavg Transpiration 0 611.89 W/m^2
Wind_f_inst Wind speed 0.06 30.31 m/s

* = Values are estimated数据引用:

影像属性

Name Type Description
end_hour Double End hour
start_hour Double Start hour


引用:

Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll, The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85(3), 381-394, 2004.

代码:

var dataset = ee.ImageCollection('NASA/GLDAS/V20/NOAH/G025/T3H')
                  .filter(ee.Filter.date('2010-06-01', '2010-06-02'));
var averageSurfaceSkinTemperatureK = dataset.select('AvgSurfT_inst');
var averageSurfaceSkinTemperatureKVis = {
  min: 250.0,
  max: 300.0,
  palette: ['1303ff', '42fff6', 'f3ff40', 'ff5d0f'],
};
Map.setCenter(71.72, 52.48, 3.0);
Map.addLayer(
    averageSurfaceSkinTemperatureK, averageSurfaceSkinTemperatureKVis,
    'Average Surface Skin Temperature [K]'); 


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2415 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
220 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
557 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
86 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
138 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
76 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
257 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
122 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
123 0
|
6月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
158 0

热门文章

最新文章

下一篇
无影云桌面