Google Earth Engine ——MYD10A1 V6 Snow Cover Daily Global 500m产品包含雪盖、雪反照率、雪盖分率和质量评估(QA)数据归一化差异积雪指数数据集

简介: Google Earth Engine ——MYD10A1 V6 Snow Cover Daily Global 500m产品包含雪盖、雪反照率、雪盖分率和质量评估(QA)数据归一化差异积雪指数数据集

The MYD10A1 V6 Snow Cover Daily Global 500m product contains snow cover, snow albedo, fractional snow cover, and quality assessment (QA) data. Snow cover data are based on a snow mapping algorithm that employs a Normalized Difference Snow Index (NDSI) and other criteria tests.

General documentation


MYD10A1 V6 Snow Cover Daily Global 500m产品包含雪盖、雪反照率、雪盖分率和质量评估(QA)数据。积雪覆盖数据是基于采用归一化差异积雪指数(NDSI)和其他标准测试的积雪制图算法。

Dataset Availability

2002-07-04T00:00:00 - 2021-09-22T00:00:00

Dataset Provider

NASA NSIDC DAAC at CIRES

Collection Snippet

ee.ImageCollection("MODIS/006/MYD10A1")

Resolution

500 meters

Bands Table

Name Description Min Max Scale
NDSI_Snow_Cover NDSI snow cover. This value is computed for MOD10_L2 and retrieved when the observation of the day is selected. Provider values above 100 are masked out in this band (they can be found in the "NDSI_Snow_Cover_Class" band). 0 100 0
NDSI_Snow_Cover_Basic_QA A basic estimate of the quality of the algorithm result. This value is computed for MOD10_L2 and retrieved with the corresponding observation of the day. 0
NDSI_Snow_Cover_Basic_QA Bitmask
  • Bits 0-15: QA
    • 0: Best
    • 1: Good
    • 2: Ok
    • 3: Poor - not currently in use
    • 211: Night
    • 239: Ocean
NDSI_Snow_Cover_Algorithm_Flags_QA Bit flags indicating screen results and the presence of inland water. These flags are set when MOD10_L2 is generated and retrieved with the corresponding observation of the day. 0
NDSI_Snow_Cover_Algorithm_Flags_QA Bitmask
  • Bit 0: Inland water
    • 0: No
    • 1: Yes
  • Bit 1: Low visible screen failed. Snow detection reversed.
    • 0: No fail/not reversed
    • 1: The MODIS band 2 reflectance is ≤ 0.10 or the band 4 reflectance is ≤ 0.11
  • Bit 2: Low NDSI screen failed. Snow detection reversed.
    • 0: No fail/not reversed
    • 1: Pixels detected as having snow cover with 0.0 < NDSI < 0.10 are reversed to no snow
  • Bit 3: Combined temperature/height screen failed.
    • 1: Brightness temperature ≥ 281K, pixel height < 1300m, flag set, snow detection reversed to not snow or brightness temperature ≥ 281K, pixel height ≥ 1300m, flag set, snow detection NOT reversed.
  • Bit 4: Shortwave IR (SWIR) reflectance anomalously high.
    • 1: Snow pixel with SWIR > 0.45, flag set, snow detection reversed to not snow or snow pixel with 25% < SWIR ≤ 45%, flag set to indicate unusual snow condition, snow detection NOT reversed.
  • Bit 5: Spare
    • 0: N/A
  • Bit 6: Spare
    • 0: N/A
  • Bit 7: Solar zenith screen failed (angles exceed 70°), uncertainty increased.
    • 0: No
    • 1: Yes
NDSI Raw NDSI (i.e. prior to screening). This value is computed for MOD10_L2 and retrieved with the corresponding observation of the day. 0 10000 0.0001
Snow_Albedo_Daily_Tile Snow albedo percentage. Provider values above 100 are masked out in this band (they can be found in the "Snow_Albedo_Daily_Tile_Class" band).' 1 100 0
orbit_pnt Pointer to the orbit number of the swath that was selected as the observation of the day. The pointer references by index the list of orbit numbers written to the ORBITNUMBERARRAY metadata object in ArchiveMetadata.0. 0
granule_pnt Pointer to the granule (swath) that was mapped into the tile. The pointer references the corresponding value in the GRANULEPOINTERARRAY metadata object written to ArchiveMetadata.0. 0
NDSI_Snow_Cover_Class Landcover classes from the "NDSI_Snow_Cover" subdataset (provider values less than or equal to 100 are masked out). 0
Snow_Albedo_Daily_Tile_Class Landcover classes from the "Snow_Albedo_Daily_Tile" subdataset (provider values less than or equal to 100 are masked out). 0

Class Table: NDSI_Snow_Cover_Class

Value Color Color Value Description
200 # Missing data
201 # No decision
211 # Night
237 # Inland water
239 # Ocean
250 # Cloud
254 # Detector saturated

Class Table: Snow_Albedo_Daily_Tile_Class

Value Color Color Value Description
101 # No decision
111 # Night
125 # Land
137 # Inland water
139 # Ocean
150 # Cloud
151 # Cloud detected as snow
250 # Missing
251 # Self-shadowing
252 # Land mask mismatch
253 # BRDF failure
254 # Non-production mask

使用说明:

You may download and use photographs, imagery, or text from the NSIDC web site, unless limitations for its use are specifically stated. For more information on usage and citing NSIDC datasets, please visit the NSIDC 'Use and Copyright' page

引用:Hall, D. K., V. V. Salomonson, and G. A. Riggs. 2016. MODIS/Terra Snow Cover Daily L3 Global 500m Grid. Version 6. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center.

MODIS/Aqua Snow Cover Daily L3 Global 500m SIN Grid, Version 6 | National Snow and Ice Data Center

代码:

var dataset = ee.ImageCollection('MODIS/006/MYD10A1')
                  .filter(ee.Filter.date('2018-01-01', '2018-05-01'));
var snowCover = dataset.select('NDSI_Snow_Cover');
var snowCoverVis = {
  min: 0.0,
  max: 100.0,
  palette: ['black', '0dffff', '0524ff', 'ffffff'],
};
Map.setCenter(-38.13, 40, 2);
Map.addLayer(snowCover, snowCoverVis, 'Snow Cover');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2344 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
84 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
126 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
217 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
524 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
107 0
|
6月前
|
数据采集 编解码 人工智能
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
205 0
|
6月前
|
人工智能
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
62 0
|
6月前
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
70 0