Google Earth Engine ——MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250m归一化植被指数(NDVI)和增强植被指数EVI

简介: Google Earth Engine ——MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250m归一化植被指数(NDVI)和增强植被指数EVI

The MOD13Q1 V6 product provides a Vegetation Index (VI) value at a per pixel basis. There are two primary vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI) which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI) that minimizes canopy background variations and maintains sensitivity over dense vegetation conditions. The EVI also uses the blue band to remove residual atmosphere contamination caused by smoke and sub-pixel thin cloud clouds. The MODIS NDVI and EVI products are computed from atmospherically corrected bi-directional surface reflectances that have been masked for water, clouds, heavy aerosols, and cloud shadows.

Documentation:


MOD13Q1 V6产品在每个像素的基础上提供植被指数(VI)值。有两个主要的植被层。第一个是归一化植被指数(NDVI),它被称为现有的国家海洋和大气管理局-高级甚高分辨率辐射计(NOAA-AVHRR)得出的NDVI的连续性指数。第二个植被层是增强植被指数(EVI),它将树冠背景变化降到最低,并保持对茂密植被条件的敏感性。EVI还使用蓝色波段来消除由烟雾和亚像素薄云造成的残留大气污染。MODIS NDVI和EVI产品是由经过大气校正的双向表面反射率计算出来的,这些反射率已经屏蔽了水、云、重气溶胶和云影。

Dataset Availability

2000-02-18T00:00:00 - 2021-08-29T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("MODIS/006/MOD13Q1")

Resolution

250 meters

Bands Table

Name Description Min Max Units Wavelength Scale
NDVI Normalized Difference Vegetation Index -2000 10000 0.0001
EVI Enhanced Vegetation Index -2000 10000 0.0001
DetailedQA VI quality indicators 0
DetailedQA Bitmask
  • Bits 0-1: VI quality (MODLAND QA Bits)
    • 0: VI produced with good quality
    • 1: VI produced, but check other QA
    • 2: Pixel produced, but most probably cloudy
    • 3: Pixel not produced due to other reasons than clouds
  • Bits 2-5: VI usefulness
    • 0: Highest quality
    • 1: Lower quality
    • 2: Decreasing quality
    • 4: Decreasing quality
    • 8: Decreasing quality
    • 9: Decreasing quality
    • 10: Decreasing quality
    • 12: Lowest quality
    • 13: Quality so low that it is not useful
    • 14: L1B data faulty
    • 15: Not useful for any other reason/not processed
  • Bits 6-7: Aerosol Quantity
    • 0: Climatology
    • 1: Low
    • 2: Intermediate
    • 3: High
  • Bit 8: Adjacent cloud detected
    • 0: No
    • 1: Yes
  • Bit 9: Atmosphere BRDF correction
    • 0: No
    • 1: Yes
  • Bit 10: Mixed Clouds
    • 0: No
    • 1: Yes
  • Bits 11-13: Land/water mask
    • 0: Shallow ocean
    • 1: Land (nothing else but land)
    • 2: Ocean coastlines and lake shorelines
    • 3: Shallow inland water
    • 4: Ephemeral water
    • 5: Deep inland water
    • 6: Moderate or continental ocean
    • 7: Deep ocean
  • Bit 14: Possible snow/ice
    • 0: No
    • 1: Yes
  • Bit 15: Possible shadow
    • 0: No
    • 1: Yes
sur_refl_b01 Red surface reflectance 0 10000 645nm 0.0001
sur_refl_b02 NIR surface reflectance 0 10000 858nm 0.0001
sur_refl_b03 Blue surface reflectance 0 10000 469nm 0.0001
sur_refl_b07 MIR surface reflectance 0 10000 2130nm/2105 - 2155nm 0.0001
ViewZenith View zenith angle 0 18000 Degrees 0.01
SolarZenith Solar zenith angle 0 18000 Degrees 0.01
RelativeAzimuth Relative azimuth angle -18000 18000 Degrees 0.01
DayOfYear Julian day of year 1 366 0
SummaryQA Quality reliability of VI pixel 0
SummaryQA Bitmask
  • Bits 0-1: VI quality (MODLAND QA Bits)
    • 0: Good data, use with confidence
    • 1: Marginal data, useful but look at detailed QA for more information
    • 2: Pixel covered with snow/ice
    • 3: Pixel is cloudy

 使用说明:MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

数据引用:


代码:

var dataset = ee.ImageCollection('MODIS/006/MOD13Q1')
                  .filter(ee.Filter.date('2018-01-01', '2018-05-01'));
var ndvi = dataset.select('NDVI');
var ndviVis = {
  min: 0.0,
  max: 8000.0,
  palette: [
    'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901',
    '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',
    '012E01', '011D01', '011301'
  ],
};
Map.setCenter(6.746, 46.529, 2);
Map.addLayer(ndvi, ndviVis, 'NDVI');


相关文章
|
7月前
Google Earth Engine(GEE) ——社会关联指数Social Connectedness Index(SCI)数据集
Google Earth Engine(GEE) ——社会关联指数Social Connectedness Index(SCI)数据集
71 1
|
7月前
|
传感器 编解码 API
Google Earth Engine(GEE)——如何进行NDVI和EVI指数的图表展示?
Google Earth Engine(GEE)——如何进行NDVI和EVI指数的图表展示?
151 0
Google Earth Engine(GEE)——利用归一化建筑指数NDBI(不透水层)提取建筑物
Google Earth Engine(GEE)——利用归一化建筑指数NDBI(不透水层)提取建筑物
2580 0
Google Earth Engine(GEE)——利用归一化建筑指数NDBI(不透水层)提取建筑物
|
7月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
7月前
|
机器学习/深度学习 编解码 定位技术
Google Earth Engine(GEE)——美国西部的植被干燥度5天的时间分辨率和250米的空间分辨率
Google Earth Engine(GEE)——美国西部的植被干燥度5天的时间分辨率和250米的空间分辨率
59 0
|
7月前
Google Earth Engine(GEE) ——统一的全球关键基础设施和指数(CISI)数据集
Google Earth Engine(GEE) ——统一的全球关键基础设施和指数(CISI)数据集
92 0
|
7月前
|
机器学习/深度学习 编解码 算法
Google Earth Engine(GEE) ——全球135个中低收入国家相对财富指数(RWI)数据集
Google Earth Engine(GEE) ——全球135个中低收入国家相对财富指数(RWI)数据集
69 0
|
编解码 算法 ice
Google Earth Engine(GEE)——MOD10A1 V6 Snow Cover Daily Global 500m积雪、积雪反照率、部分积雪和质量评估 (QA) 数据
Google Earth Engine(GEE)——MOD10A1 V6 Snow Cover Daily Global 500m积雪、积雪反照率、部分积雪和质量评估 (QA) 数据
348 0
Google Earth Engine(GEE)——MOD10A1 V6 Snow Cover Daily Global 500m积雪、积雪反照率、部分积雪和质量评估 (QA) 数据
|
编解码
Google Earth Engine(GEE)——单个像素点的时序分析可以获取NDVI、EVI、NDMI、TCG、TCB、TCW等指数1984至2021年的单点时序
Google Earth Engine(GEE)——单个像素点的时序分析可以获取NDVI、EVI、NDMI、TCG、TCB、TCW等指数1984至2021年的单点时序
430 0
Google Earth Engine(GEE)——单个像素点的时序分析可以获取NDVI、EVI、NDMI、TCG、TCB、TCW等指数1984至2021年的单点时序
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2677 1
如何用Google Earth Engine快速、大量下载遥感影像数据?