机器学习吴恩达课程总结(二)

简介: 机器学习吴恩达课程总结(二)

6. 第六章 逻辑回归(Logistic Regression)

6.1 分类(Classification)

image.png

6.2 逻辑回归:假设陈述

image.png

6.3 决策边界(Decision Boundary)

image.png

6.4 损失函数(Cost Function)

image.png


6.5 简化代价函数与梯度下降

image.png

6.6 高级优化方法

优化算法:


梯度下降法(常用,简单)

共轭梯度法(conjugate gradient)

拟牛顿法(BFGS)

L-BFGS

高级优化算法的优点:


无需手动挑选学习率α \alphaα

通常比梯度下降法更快

高级优化算法的缺点:


更复杂


6.7 多分类:一对多(one-vs-all)

image.png

7. 第七章 正则化(Regularization)

7.1 过拟合问题(overfitting)

image.png

image.png

7.2 代价函数(cost function)

image.png


7.4 正则化逻辑回归

image.png


8. 第八章 神经网络:表示(Neural Network:Representation)

8.1 非线性假设(Non-linear hypothesis)

image.png


8.2 神经元和大脑

起源:算法尝试模仿大脑。


神经网络在80年代和90年代早期非常流行,在90年代后期流行度下降。


近来神经网络热度重新上升:已经在很多应用领域成为目前最先进的方法。


amazing:你能把几乎任何传感器接入到大脑中,大脑的学习算法就能找出学习数据的方法,并处理这些数据。这真是太神奇了,这也告诉我们通用人工智能是可行的,存在的!!!


8.3 模型展示1

image.png

image.png

8.4 模型展示2

image.png

image.png

8.5 示例与直观解释1

非线性分类器可以处理异或问题,而线性分类器不行。


8.6 示例与直观解释2

image.png


8.7 多分类

最后输出层输出n维向量,每一维表示是这一类的概率。

相关文章
|
6月前
|
机器学习/深度学习 供应链 算法
机器学习课程学习随笔
机器学习课程学习随笔
|
3月前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
41 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 吴恩达:机器学习的六个核心算法!
吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
114 1
算法金 | 吴恩达:机器学习的六个核心算法!
|
6月前
|
机器学习/深度学习 监控 算法
LabVIEW使用机器学习分类模型探索基于技能课程的学习
LabVIEW使用机器学习分类模型探索基于技能课程的学习
52 1
|
6月前
|
机器学习/深度学习 人工智能 算法
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
|
6月前
|
机器学习/深度学习
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
|
6月前
|
机器学习/深度学习 人工智能
【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
|
6月前
|
机器学习/深度学习 人工智能 算法
【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
|
6月前
|
机器学习/深度学习 人工智能
【人工智能】<吴恩达-机器学习>单变量的线性回归&认识梯度下降
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>单变量的线性回归&认识梯度下降
|
6月前
|
机器学习/深度学习 人工智能 数据挖掘
【人工智能】<吴恩达-机器学习>监督学习&非监督学习
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>监督学习&非监督学习