Google Earth Engine ——MCD64A1.006 MODIS Burned Area Monthly Global 500m第6版燃烧区数据产品

简介: Google Earth Engine ——MCD64A1.006 MODIS Burned Area Monthly Global 500m第6版燃烧区数据产品

Terra和Aqua结合的MCD64A1第6版燃烧区数据产品是每月一次的全球网格化500米产品,包含每像素的燃烧区和质量信息。MCD64A1烧毁面积绘图方法采用了500米MODIS表面反射图像和1公里MODIS主动火灾观测。该算法使用对燃烧敏感的植被指数(VI)来创建动态阈值,应用于综合数据。VI是由MODIS短波红外大气校正表面反射带5和7得出的,带有时间纹理的测量。该算法确定了每个单独的MODIS瓦片中的500米网格单元的燃烧日期。日期被编码在一个单一的数据层中,作为焚烧发生的日历年的序日,其值被分配给未焚烧的土地像素,并为缺失的数据和水网格单元保留额外的特殊值。


The Terra and Aqua combined MCD64A1 Version 6 Burned Area data product is a monthly, global gridded 500m product containing per-pixel burned-area and quality information. The MCD64A1 burned-area mapping approach employs 500m MODIS Surface Reflectance imagery coupled with 1km MODIS active fire observations. The algorithm uses a burn sensitive vegetation index (VI) to create dynamic thresholds that are applied to the composite data. The VI is derived from MODIS shortwave infrared atmospherically corrected surface reflectance bands 5 and 7 with a measure of temporal texture. The algorithm identifies the date of burn for the 500m grid cells within each individual MODIS tile. The date is encoded in a single data layer as the ordinal day of the calendar year on which the burn occurred, with values assigned to unburned land pixels and additional special values reserved for missing data and water grid cells.

Documentation:


Dataset Availability

2000-11-01T00:00:00 - 2021-07-01T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

Copied

ee.ImageCollection("MODIS/006/MCD64A1")

Tags

burnfiregeophysicalmodismcd64a1monthlyglobalusgsnasa

DESCRIPTIONBANDSTERMS OF USECITATIONSDOIS

Resolution

500 meters

Bands Table

Name Description Min Max
BurnDate Burn day of year. Possible values: 0 (unburned), 1-366 (approximate Julian day of burning). 0 366
Uncertainty Estimated uncertainty in burn day 0 100
QA Quality assurance indicators
QA Bitmask
  • Bit 0: Land/water
    • 0: Water grid cell
    • 1: Land grid cell
  • Bit 1: Valid data flag. A value of 1 indicates that there was sufficient valid data in the reflectance time series for the grid cell to be processed. (NB Water grid cells will always have this bit clear.)
    • 0: Insufficient valid data
    • 1: Sufficient valid data
  • Bit 2: Shortened mapping period. This flag indicates that the period of reliable mapping does not encompass the full one-month product period, i.e., burns could not be reliably mapped over the full calendar month.
    • 0: Mapping period not shortened
    • 1: Mapping period shortened
  • Bit 3: Grid cell was relabeled during the contextual relabeling phase of the algorithm.
    • 0: Grid cell was not relabeled
    • 1: Grid cell was relabeled
  • Bit 4: Spare bit
    • 0: N/A
  • Bits 5-7: Special condition code reserved for unburned grid cells. This code provides an explanation for any grid cells that were summarily classified as *unburned* by the detection algorithm due to special circumstances.
    • 0: None or not applicable (i.e., burned, unmapped, or water grid cell).
    • 1: Valid observations spaced too sparsely in time.
    • 2: Too few training observations or insufficient spectral separability between burned and unburned classes.
    • 3: Apparent burn date at limits of time series.
    • 4: Apparent water contamination.
    • 5: Persistent hot spot.
    • 6: Reserved for future use.
    • 7: Reserved for future use.
FirstDay First day of the year of reliable change detection 0 366
LastDay Last day of the year of reliable change detection 0 366

使用说明:

MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

通过LP DAAC获得的MODIS数据和产品对后续使用、销售或再分配没有限制。

引用:


代码:

var dataset = ee.ImageCollection('MODIS/006/MCD64A1')
                  .filter(ee.Filter.date('2017-01-01', '2018-05-01'));
var burnedArea = dataset.select('BurnDate');
var burnedAreaVis = {
  min: 30.0,
  max: 341.0,
  palette: ['4e0400', '951003', 'c61503', 'ff1901'],
};
Map.setCenter(6.746, 46.529, 2);
Map.addLayer(burnedArea, burnedAreaVis, 'Burned Area');


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2543 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
227 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
598 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
94 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
154 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
77 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
272 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
136 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
124 0
|
7月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
179 0