万字长文详解HiveSQL执行计划(一)

简介: 万字长文详解HiveSQL执行计划

本文目录:


一、前言

二、SQL的执行计划

  1. explain 的用法
  2. explain 的使用场景
    案例一:join 语句会过滤 null 的值吗?
    案例二:group by 分组语句会进行排序吗?
    案例三:哪条sql执行效率高呢?
    案例四:定位产生数据倾斜的代码段
  3. explain dependency的用法
    案例一:识别看似等价的代码
    案例二:识别SQL读取数据范围的差别
  4. explain authorization 的用法


一、前言



Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其实是不等价的,看似不等价的SQL其实是等价的SQL。可以说执行计划是打开SQL优化大门的一把钥匙。


要想学SQL执行计划,就需要学习查看执行计划的命令:explain,在查询语句的SQL前面加上关键字explain是查看执行计划的基本方法。


学会explain,能够给我们工作中使用hive带来极大的便利!


二、SQL的执行计划



Hive提供的执行计划目前可以查看的信息有以下几种:


  • explain:查看执行计划的基本信息;
  • explain dependency:dependency在explain语句中使用会产生有关计划中输入的额外信息。它显示了输入的各种属性;
  • explain authorization:查看SQL操作相关权限的信息;
  • explain vectorization:查看SQL的向量化描述信息,显示为什么未对Map和Reduce进行矢量化。从 Hive 2.3.0 开始支持;
  • explain analyze:用实际的行数注释计划。从 Hive 2.2.0 开始支持;
  • explain cbo:输出由Calcite优化器生成的计划。CBO 从 Hive 4.0.0 版本开始支持;
  • explain locks:这对于了解系统将获得哪些锁以运行指定的查询很有用。LOCKS 从 Hive 3.2.0 开始支持;
  • explain ast:输出查询的抽象语法树。AST 在 Hive 2.1.0 版本删除了,存在bug,转储AST可能会导致OOM错误,将在4.0.0版本修复;
  • explain extended:加上 extended 可以输出有关计划的额外信息。这通常是物理信息,例如文件名,这些额外信息对我们用处不大;


1. explain 的用法


Hive提供了explain命令来展示一个查询的执行计划,这个执行计划对于我们了解底层原理,Hive 调优,排查数据倾斜等很有帮助。


使用语法如下:

explain query;

在 hive cli 中输入以下命令(hive 2.3.7):

explain select sum(id) from test1;

得到结果:

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1
STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: test1
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: id (type: int)
              outputColumnNames: id
              Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: sum(id)
                mode: hash
                outputColumnNames: _col0
                Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  sort order:
                  Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col0 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: sum(VALUE._col0)
          mode: mergepartial
          outputColumnNames: _col0
          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
          File Output Operator
            compressed: false
            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
            table:
                input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink


看完以上内容有什么感受,是不是感觉都看不懂,不要着急,下面将会详细讲解每个参数,相信你学完下面的内容之后再看 explain 的查询结果将游刃有余。


一个HIVE查询被转换为一个由一个或多个stage组成的序列(有向无环图DAG)。这些stage可以是MapReduce stage,也可以是负责元数据存储的stage,也可以是负责文件系统的操作(比如移动和重命名)的stage。


我们将上述结果拆分看,先从最外层开始,包含两个大的部分:


  1. stage dependencies: 各个stage之间的依赖性
  2. stage plan: 各个stage的执行计划


先看第一部分 stage dependencies ,包含两个 stage,Stage-1 是根stage,说明这是开始的stage,Stage-0 依赖 Stage-1,Stage-1执行完成后执行Stage-0。


再看第二部分 stage plan,里面有一个 Map Reduce,一个MR的执行计划分为两个部分:


  1. Map Operator Tree: MAP端的执行计划树
  2. Reduce Operator Tree: Reduce端的执行计划树


这两个执行计划树里面包含这条sql语句的 operator:


  1. TableScan:表扫描操作,map端第一个操作肯定是加载表,所以就是表扫描操作,常见的属性:
  • alias: 表名称
  • Statistics: 表统计信息,包含表中数据条数,数据大小等
  1. Select Operator: 选取操作,常见的属性 :
  • expressions:需要的字段名称及字段类型
  • outputColumnNames:输出的列名称
  • Statistics:表统计信息,包含表中数据条数,数据大小等
  1. Group By Operator:分组聚合操作,常见的属性:
  • aggregations:显示聚合函数信息
  • mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合
  • keys:分组的字段,如果没有分组,则没有此字段
  • outputColumnNames:聚合之后输出列名
  • Statistics: 表统计信息,包含分组聚合之后的数据条数,数据大小等
  1. Reduce Output Operator:输出到reduce操作,常见属性:
  • sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +- 排序的列为两列,第一列为正序,第二列为倒序
  1. Filter Operator:过滤操作,常见的属性:
  • predicate:过滤条件,如sql语句中的where id>=1,则此处显示(id >= 1)
  1. Map Join Operator:join 操作,常见的属性:
  • condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2
  • keys: join 的条件字段
  • outputColumnNames: join 完成之后输出的字段
  • Statistics: join 完成之后生成的数据条数,大小等
  1. File Output Operator:文件输出操作,常见的属性
  • compressed:是否压缩
  • table:表的信息,包含输入输出文件格式化方式,序列化方式等
  1. Fetch Operator 客户端获取数据操作,常见的属性:
  • limit,值为 -1 表示不限制条数,其他值为限制的条数


2. explain 的使用场景


本节介绍 explain 能够为我们在生产实践中带来哪些便利及解决我们哪些迷惑


案例一:join 语句会过滤 null 的值吗?


现在,我们在hive cli 输入以下查询计划语句


select 
  a.id,
  b.user_name 
from test1 a 
join test2 b 
on a.id=b.id;

问:上面这条 join 语句会过滤 id 为 null 的值吗

执行下面语句:

explain 
select 
  a.id,
  b.user_name 
from test1 a 
join test2 b 
on a.id=b.id;

我们来看结果 (为了适应页面展示,仅截取了部分输出信息):

TableScan
 alias: a
 Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
 Filter Operator
    predicate: id is not null (type: boolean)
    Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
    Select Operator
        expressions: id (type: int)
        outputColumnNames: _col0
        Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
        HashTable Sink Operator
           keys:
             0 _col0 (type: int)
             1 _col0 (type: int)
 ...


从上述结果可以看到 predicate: id is not null 这样一行,说明 join 时会自动过滤掉关联字段为 null 值的情况,但 left join 或 full join 是不会自动过滤null值的,大家可以自行尝试下。


案例二:group by 分组语句会进行排序吗?


看下面这条sql

select 
  id,
  max(user_name) 
from test1 
group by id;

问:group by 分组语句会进行排序吗

直接来看 explain 之后结果 (为了适应页面展示,仅截取了部分输出信息)

TableScan
    alias: test1
    Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
    Select Operator
        expressions: id (type: int), user_name (type: string)
        outputColumnNames: id, user_name
        Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
        Group By Operator
           aggregations: max(user_name)
           keys: id (type: int)
           mode: hash
           outputColumnNames: _col0, _col1
           Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
           Reduce Output Operator
             key expressions: _col0 (type: int)
             sort order: +
             Map-reduce partition columns: _col0 (type: int)
             Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
             value expressions: _col1 (type: string)
 ...


我们看 Group By Operator,里面有 keys: id (type: int) 说明按照 id 进行分组的,再往下看还有 sort order: + ,说明是按照 id 字段进行正序排序的。


案例三:哪条sql执行效率高呢?


观察两条sql语句

SELECT
 a.id,
 b.user_name
FROM
 test1 a
JOIN test2 b ON a.id = b.id
WHERE
 a.id > 2;
SELECT
 a.id,
 b.user_name
FROM
 (SELECT * FROM test1 WHERE id > 2) a
JOIN test2 b ON a.id = b.id;


这两条sql语句输出的结果是一样的,但是哪条sql执行效率高呢?


有人说第一条sql执行效率高,因为第二条sql有子查询,子查询会影响性能;


有人说第二条sql执行效率高,因为先过滤之后,在进行join时的条数减少了,所以执行效率就高了。


到底哪条sql效率高呢,我们直接在sql语句前面加上 explain,看下执行计划不就知道了嘛!


在第一条sql语句前加上 explain,得到如下结果


hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2;
OK
Explain
STAGE DEPENDENCIES:
  Stage-4 is a root stage
  Stage-3 depends on stages: Stage-4
  Stage-0 depends on stages: Stage-3
STAGE PLANS:
  Stage: Stage-4
    Map Reduce Local Work
      Alias -> Map Local Tables:
        $hdt$_0:a
          Fetch Operator
            limit: -1
      Alias -> Map Local Operator Tree:
        $hdt$_0:a
          TableScan
            alias: a
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int)
                outputColumnNames: _col0
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                HashTable Sink Operator
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
  Stage: Stage-3
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: b
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int), user_name (type: string)
                outputColumnNames: _col0, _col1
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                Map Join Operator
                  condition map:
                       Inner Join 0 to 1
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
                  outputColumnNames: _col0, _col2
                  Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                  Select Operator
                    expressions: _col0 (type: int), _col2 (type: string)
                    outputColumnNames: _col0, _col1
                    Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                    File Output Operator
                      compressed: false
                      Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                      table:
                          input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                          output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                          serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
      Local Work:
        Map Reduce Local Work
  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

在第二条sql语句前加上 explain,得到如下结果

hive (default)> explain select a.id,b.user_name from(select * from  test1 where id>2 ) a join test2 b on a.id=b.id;
OK
Explain
STAGE DEPENDENCIES:
  Stage-4 is a root stage
  Stage-3 depends on stages: Stage-4
  Stage-0 depends on stages: Stage-3
STAGE PLANS:
  Stage: Stage-4
    Map Reduce Local Work
      Alias -> Map Local Tables:
        $hdt$_0:test1
          Fetch Operator
            limit: -1
      Alias -> Map Local Operator Tree:
        $hdt$_0:test1
          TableScan
            alias: test1
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int)
                outputColumnNames: _col0
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                HashTable Sink Operator
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
  Stage: Stage-3
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: b
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int), user_name (type: string)
                outputColumnNames: _col0, _col1
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                Map Join Operator
                  condition map:
                       Inner Join 0 to 1
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
                  outputColumnNames: _col0, _col2
                  Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                  Select Operator
                    expressions: _col0 (type: int), _col2 (type: string)
                    outputColumnNames: _col0, _col1
                    Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                    File Output Operator
                      compressed: false
                      Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                      table:
                          input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                          output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                          serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
      Local Work:
        Map Reduce Local Work
  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink


大家有什么发现,除了表别名不一样,其他的执行计划完全一样,都是先进行 where 条件过滤,在进行 join 条件关联。说明 hive 底层会自动帮我们进行优化,所以这两条sql语句执行效率是一样的。

相关文章
|
SQL 存储 分布式计算
【Hive】(二十三)简单几招教你如何解决 Hive 中小文件过多的问题
【Hive】(二十三)简单几招教你如何解决 Hive 中小文件过多的问题
1777 0
|
4月前
|
SQL JSON 分布式计算
ODPS SQL ——列转行、行转列这回让我玩明白了!
本文详细介绍了在MaxCompute中如何使用TRANS_ARRAY和LATERAL VIEW EXPLODE函数来实现列转行的功能。
|
存储 编译器 数据安全/隐私保护
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】(上)
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】(下)
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】
|
SQL 数据采集 安全
下课看着文档走回实验室,我重新拾起了遗忘的SQL运算符
下课看着文档走回实验室,我重新拾起了遗忘的SQL运算符
128 0
下课看着文档走回实验室,我重新拾起了遗忘的SQL运算符
|
SQL 存储 缓存
字节三面:详解一条 SQL 的执行过程
天天和数据库打交道,一天能写上几十条 SQL 语句,但你知道我们的系统是如何和数据库交互的吗?MySQL 如何帮我们存储数据、又是如何帮我们管理事务?
141 0
|
SQL 存储 JSON
万字长文详解HiveSQL执行计划(二)
万字长文详解HiveSQL执行计划
388 0
万字长文详解HiveSQL执行计划(二)
|
SQL 分布式计算 算法
Hive 中的四种排序详解,再也不会混淆用法了
排序操作是一个比较常见的操作,尤其是在数据分析的时候,我们往往需要对数据进行排序,hive 中和排序相关的有四个关键字,今天我们就看一下,它们都是什么作用。
719 0
Hive 中的四种排序详解,再也不会混淆用法了
|
SQL 存储 分布式计算
万字长文详解HiveSQL执行计划 (一)
Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其实是不等价的,看似不等价的SQL其实是等价的SQL。可以说执行计划是打开SQL优化大门的一把钥匙。
434 0