Google Earth Engine ——2001-2017年非洲土壤深度 0-20 厘米和 20-50 厘米的可提取铁,预测平均值和标准偏差数据集

简介: Google Earth Engine ——2001-2017年非洲土壤深度 0-20 厘米和 20-50 厘米的可提取铁,预测平均值和标准偏差数据集

iSDAsoil Extractable Iron

Extractable iron at soil depths of 0-20 cm and 20-50 cm, predicted mean and standard deviation.

Pixel values must be back-transformed with exp(x/10)-1.

In areas of dense jungle (generally over central Africa), model accuracy is low and therefore artefacts such as banding (striping) might be seen.

Soil property predictions were made by Innovative Solutions for Decision Agriculture Ltd. (iSDA) at 30 m pixel size using machine learning coupled with remote sensing data and a training set of over 100,000 analyzed soil samples.

Further information can be found in the FAQ and technical information documentation. To submit an issue or request support, please visit the iSDAsoil site.


土壤深度 0-20 厘米和 20-50 厘米的可提取铁,预测平均值和标准偏差。


像素值必须使用 exp(x/10)-1 进行反向转换。


在茂密的丛林地区(通常在非洲中部),模型精度较低,因此可能会看到条带(条纹)等伪影。


决策农业创新解决方案有限公司 (iSDA) 使用机器学习、遥感数据和超过 100,000 个分析土壤样本的训练集,以 30 m 像素大小对土壤特性进行了预测。


更多信息可以在常见问题和技术信息文档中找到。要提交问题或请求支持,请访问 iSDAsoil 站点。


Dataset Availability

2001-01-01T00:00:00 - 2017-01-01T00:00:00

Dataset Provider

iSDA

Collection Snippet

ee.Image("ISDASOIL/Africa/v1/iron_extractable")

Resolution

30 meters

Bands Table

Name Description Min Max Units
mean_0_20 Iron, extractable, predicted mean at 0-20 cm depth 0 62 ppm
mean_20_50 Iron, extractable, predicted mean at 20-50 cm depth 0 47 ppm
stdev_0_20 Iron, extractable, standard deviation at 0-20 cm depth 0 39 ppm
stdev_20_50 Iron, extractable, standard deviation at 20-50 cm depth 0 39 ppm

数据引用:

Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y

代码:

var mean_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#0D0887" label="0-6.4" opacity="1" quantity="20"/>' +
  '<ColorMapEntry color="#350498" label="6.4-13.9" opacity="1" quantity="27"/>' +
  '<ColorMapEntry color="#5402A3" label="13.9-29" opacity="1" quantity="34"/>' +
  '<ColorMapEntry color="#7000A8" label="29-35.6" opacity="1" quantity="36"/>' +
  '<ColorMapEntry color="#8B0AA5" label="35.6-43.7" opacity="1" quantity="38"/>' +
  '<ColorMapEntry color="#A31E9A" label="43.7-48.4" opacity="1" quantity="39"/>' +
  '<ColorMapEntry color="#B93289" label="48.4-53.6" opacity="1" quantity="40"/>' +
  '<ColorMapEntry color="#CC4678" label="53.6-59.3" opacity="1" quantity="41"/>' +
  '<ColorMapEntry color="#DB5C68" label="59.3-65.7" opacity="1" quantity="42"/>' +
  '<ColorMapEntry color="#E97158" label="65.7-72.7" opacity="1" quantity="43"/>' +
  '<ColorMapEntry color="#F48849" label="72.7-80.5" opacity="1" quantity="44"/>' +
  '<ColorMapEntry color="#FBA139" label="80.5-89" opacity="1" quantity="45"/>' +
  '<ColorMapEntry color="#FEBC2A" label="89-98.5" opacity="1" quantity="46"/>' +
  '<ColorMapEntry color="#FADA24" label="98.5-108.9" opacity="1" quantity="47"/>' +
  '<ColorMapEntry color="#F0F921" label="108.9-1200" opacity="1" quantity="48"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var mean_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#0D0887" label="0-6.4" opacity="1" quantity="20"/>' +
  '<ColorMapEntry color="#350498" label="6.4-13.9" opacity="1" quantity="27"/>' +
  '<ColorMapEntry color="#5402A3" label="13.9-29" opacity="1" quantity="34"/>' +
  '<ColorMapEntry color="#7000A8" label="29-35.6" opacity="1" quantity="36"/>' +
  '<ColorMapEntry color="#8B0AA5" label="35.6-43.7" opacity="1" quantity="38"/>' +
  '<ColorMapEntry color="#A31E9A" label="43.7-48.4" opacity="1" quantity="39"/>' +
  '<ColorMapEntry color="#B93289" label="48.4-53.6" opacity="1" quantity="40"/>' +
  '<ColorMapEntry color="#CC4678" label="53.6-59.3" opacity="1" quantity="41"/>' +
  '<ColorMapEntry color="#DB5C68" label="59.3-65.7" opacity="1" quantity="42"/>' +
  '<ColorMapEntry color="#E97158" label="65.7-72.7" opacity="1" quantity="43"/>' +
  '<ColorMapEntry color="#F48849" label="72.7-80.5" opacity="1" quantity="44"/>' +
  '<ColorMapEntry color="#FBA139" label="80.5-89" opacity="1" quantity="45"/>' +
  '<ColorMapEntry color="#FEBC2A" label="89-98.5" opacity="1" quantity="46"/>' +
  '<ColorMapEntry color="#FADA24" label="98.5-108.9" opacity="1" quantity="47"/>' +
  '<ColorMapEntry color="#F0F921" label="108.9-1200" opacity="1" quantity="48"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var stdev_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="1"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="6"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var stdev_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="1"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="6"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var raw = ee.Image("ISDASOIL/Africa/v1/iron_extractable");
Map.addLayer(
    raw.select(0).sldStyle(mean_0_20), {},
    "Iron, extractable, mean visualization, 0-20 cm");
Map.addLayer(
    raw.select(1).sldStyle(mean_20_50), {},
    "Iron, extractable, mean visualization, 20-50 cm");
Map.addLayer(
    raw.select(2).sldStyle(stdev_0_20), {},
    "Iron, extractable, stdev visualization, 0-20 cm");
Map.addLayer(
    raw.select(3).sldStyle(stdev_20_50), {},
    "Iron, extractable, stdev visualization, 20-50 cm");
var converted = raw.divide(10).exp().subtract(1);
var visualization = {min: 0, max: 140};
Map.setCenter(25, -3, 2);
Map.addLayer(converted.select(0), visualization, "Iron, extractable, mean, 0-20 cm");


相关文章
|
8月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
105 0
|
8月前
|
人工智能 定位技术
Google Earth Engine(GEE)——美国干旱监测数据集
Google Earth Engine(GEE)——美国干旱监测数据集
76 0
|
8月前
|
人工智能
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
159 0
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
|
8月前
|
人工智能
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
78 0
|
8月前
|
人工智能 atlas
Google Earth Engine(GEE)RADD - RAdar for Detecting Deforestation-基于Sentinel-1的10米空间尺度的湿润热带森林扰动预警数据集
Google Earth Engine(GEE)RADD - RAdar for Detecting Deforestation-基于Sentinel-1的10米空间尺度的湿润热带森林扰动预警数据集
75 0
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2772 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
8月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
172 0
|
8月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
89 0
|
8月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
309 0
|
8月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
152 0

热门文章

最新文章