JVM源码分析之不可控的堆外内存

简介: JVM源码分析之不可控的堆外内存

概述


之前写过篇文章,关于堆外内存的,JVM源码分析之堆外内存完全解读,里面重点讲了DirectByteBuffer的原理,但是今天碰到一个比较奇怪的问题,在设置了-XX:MaxDirectMemorySize=1G的前提下,然后统计所有DirectByteBuffer对象后面占用的内存达到了7G,远远超出阈值,这个问题很诡异,于是好好查了下原因,虽然最终发现是我们统计的问题,但是期间发现的其他一些问题还是值得分享一下的。


不得不提的DirectByteBuffer构造函数


打开DirectByteBuffer这个类,我们会发现有5个构造函数

DirectByteBuffer(int cap);
DirectByteBuffer(long addr, int cap, Object ob);
private DirectByteBuffer(long addr, int cap);
protected DirectByteBuffer(int cap, long addr,FileDescriptor fd,Runnable unmapper);
DirectByteBuffer(DirectBuffer db, int mark, int pos, int lim, int cap,int off)

我们从java层面创建DirectByteBuffer对象,一般都是通过ByteBuffer的allocateDirect方法


public static ByteBuffer allocateDirect(int capacity) {
        return new DirectByteBuffer(capacity);
}

也就是会使用上面提到的第一个构造函数,即


DirectByteBuffer(int cap) {                   // package-private
        super(-1, 0, cap, cap);
        boolean pa = VM.isDirectMemoryPageAligned();
        int ps = Bits.pageSize();
        long size = Math.max(1L, (long)cap + (pa ? ps : 0));
        Bits.reserveMemory(size, cap);
        long base = 0;
        try {
            base = unsafe.allocateMemory(size);
        } catch (OutOfMemoryError x) {
            Bits.unreserveMemory(size, cap);
            throw x;
        }
        unsafe.setMemory(base, size, (byte) 0);
        if (pa && (base % ps != 0)) {
            // Round up to page boundary
            address = base + ps - (base & (ps - 1));
        } else {
            address = base;
        }
        cleaner = Cleaner.create(this, new Deallocator(base, size, cap));
        att = null;
    }

而这个构造函数里的Bits.reserveMemory(size, cap)方法会做堆外内存的阈值check


static void reserveMemory(long size, int cap) {
        synchronized (Bits.class) {
            if (!memoryLimitSet && VM.isBooted()) {
                maxMemory = VM.maxDirectMemory();
                memoryLimitSet = true;
            }
            // -XX:MaxDirectMemorySize limits the total capacity rather than the
            // actual memory usage, which will differ when buffers are page
            // aligned.
            if (cap <= maxMemory - totalCapacity) {
                reservedMemory += size;
                totalCapacity += cap;
                count++;
                return;
            }
        }
        System.gc();
        try {
            Thread.sleep(100);
        } catch (InterruptedException x) {
            // Restore interrupt status
            Thread.currentThread().interrupt();
        }
        synchronized (Bits.class) {
            if (totalCapacity + cap > maxMemory)
                throw new OutOfMemoryError("Direct buffer memory");
            reservedMemory += size;
            totalCapacity += cap;
            count++;
        }
    }

因此当我们已经分配的内存超过阈值的时候会触发一次gc动作,并重新做一次分配,如果还是超过阈值,那将会抛出OOM,因此分配动作会失败。

所以从这一切看来,只要设置了-XX:MaxDirectMemorySize=1G是不会出现超过这个阈值的情况的,会看到不断的做GC。


构造函数再探


那其他的构造函数主要是用在什么情况下的呢?


我们知道DirectByteBuffer回收靠的是里面有个cleaner的属性,但是我们发现有几个构造函数里cleaner这个属性却是null,那这种情况下他们怎么被回收呢?


那下面请大家先看下DirectByteBuffer里的这两个函数:


public ByteBuffer slice() {
        int pos = this.position();
        int lim = this.limit();
        assert (pos <= lim);
        int rem = (pos <= lim ? lim - pos : 0);
        int off = (pos << 0);
        assert (off >= 0);
        return new DirectByteBuffer(this, -1, 0, rem, rem, off);
    }
    public ByteBuffer duplicate() {
        return new DirectByteBuffer(this,
                                              this.markValue(),
                                              this.position(),
                                              this.limit(),
                                              this.capacity(),
                                              0);
    }

从名字和实现上基本都能猜出是干什么的了,slice其实是从一块已知的内存里取出剩下的一部分,用一个新的DirectByteBuffer对象指向它,而duplicate就是创建一个现有DirectByteBuffer的全新副本,各种指针都一样。


因此从这个实现来看,后面关联的堆外内存其实是同一块,所以如果我们做统计的时候如果仅仅将所有DirectByteBuffer对象的capacity加起来,那可能会导致算出来的结果偏大不少,这其实也是我查的那个问题,本来设置了阈值1G,但是发现达到了7G的效果。所以这种情况下使用的构造函数,可以让cleaner为null,回收靠原来的那个DirectByteBuffer对象被回收。


被遗忘的检查


但是还有种情况,也是本文要讲的重点,在jvm里可以通过jni方法回调上面的DirectByteBuffer构造函数,这个构造函数是


private DirectByteBuffer(long addr, int cap) {
    super(-1, 0, cap, cap);
    address = addr;
    cleaner = null;
    att = null;
}

而调用这个构造函数的jni方法是 jni_NewDirectByteBuffer


extern "C" jobject JNICALL jni_NewDirectByteBuffer(JNIEnv *env, void* address, jlong capacity)
{
  // thread_from_jni_environment() will block if VM is gone.
  JavaThread* thread = JavaThread::thread_from_jni_environment(env);
  JNIWrapper("jni_NewDirectByteBuffer");
#ifndef USDT2
  DTRACE_PROBE3(hotspot_jni, NewDirectByteBuffer__entry, env, address, capacity);
#else /* USDT2 */
HOTSPOT_JNI_NEWDIRECTBYTEBUFFER_ENTRY(
                                       env, address, capacity);
#endif /* USDT2 */
  if (!directBufferSupportInitializeEnded) {
    if (!initializeDirectBufferSupport(env, thread)) {
#ifndef USDT2
      DTRACE_PROBE1(hotspot_jni, NewDirectByteBuffer__return, NULL);
#else /* USDT2 */
      HOTSPOT_JNI_NEWDIRECTBYTEBUFFER_RETURN(
                                             NULL);
#endif /* USDT2 */
      return NULL;
    }
  }
  // Being paranoid about accidental sign extension on address
  jlong addr = (jlong) ((uintptr_t) address);
  // NOTE that package-private DirectByteBuffer constructor currently
  // takes int capacity
  jint  cap  = (jint)  capacity;
  jobject ret = env->NewObject(directByteBufferClass, directByteBufferConstructor, addr, cap);
#ifndef USDT2
  DTRACE_PROBE1(hotspot_jni, NewDirectByteBuffer__return, ret);
#else /* USDT2 */
  HOTSPOT_JNI_NEWDIRECTBYTEBUFFER_RETURN(
                                         ret);
#endif /* USDT2 */
  return ret;
}

想象这么种情况,我们写了一个native方法,里面分配了一块内存,同时通过上面这个方法和一个DirectByteBuffer对象关联起来,那从java层面来看这个DirectByteBuffer确实是一个有效的占有不少native内存的对象,但是这个对象后面关联的内存完全绕过了MaxDirectMemorySize的check,所以也可能给你造成这种现象,明明设置了MaxDirectMemorySize,但是发现DirectByteBuffer关联的堆外内存其实是大于它的。

相关文章
|
9天前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
7天前
|
Java Linux Windows
JVM内存
首先JVM内存限制于实际的最大物理内存,假设物理内存无限大的话,JVM内存的最大值跟操作系统有很大的关系。简单的说就32位处理器虽然可控内存空间有4GB,但是具体的操作系统会给一个限制,这个限制一般是2GB-3GB(一般来说Windows系统下为1.5G-2G,Linux系统下为2G-3G),而64bit以上的处理器就不会有限制。
8 1
|
26天前
|
存储 算法 Java
聊聊jvm的内存结构, 以及各种结构的作用
【10月更文挑战第27天】JVM(Java虚拟机)的内存结构主要包括程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和运行时常量池。各部分协同工作,为Java程序提供高效稳定的内存管理和运行环境,确保程序的正常执行、数据存储和资源利用。
46 10
|
25天前
|
存储 算法 Java
Java虚拟机(JVM)的内存管理与性能优化
本文深入探讨了Java虚拟机(JVM)的内存管理机制,包括堆、栈、方法区等关键区域的功能与作用。通过分析垃圾回收算法和调优策略,旨在帮助开发者理解如何有效提升Java应用的性能。文章采用通俗易懂的语言,结合具体实例,使读者能够轻松掌握复杂的内存管理概念,并应用于实际开发中。
|
1月前
|
存储 监控 算法
JVM调优深度剖析:内存模型、垃圾收集、工具与实战
【10月更文挑战第9天】在Java开发领域,Java虚拟机(JVM)的性能调优是构建高性能、高并发系统不可或缺的一部分。作为一名资深架构师,深入理解JVM的内存模型、垃圾收集机制、调优工具及其实现原理,对于提升系统的整体性能和稳定性至关重要。本文将深入探讨这些内容,并提供针对单机几十万并发系统的JVM调优策略和Java代码示例。
51 2
|
1月前
|
存储 Kubernetes 架构师
阿里面试:JVM 锁内存 是怎么变化的? JVM 锁的膨胀过程 ?
尼恩,一位经验丰富的40岁老架构师,通过其读者交流群分享了一系列关于JVM锁的深度解析,包括偏向锁、轻量级锁、自旋锁和重量级锁的概念、内存结构变化及锁膨胀流程。这些内容不仅帮助群内的小伙伴们顺利通过了多家一线互联网企业的面试,还整理成了《尼恩Java面试宝典》等技术资料,助力更多开发者提升技术水平,实现职业逆袭。尼恩强调,掌握这些核心知识点不仅能提高面试成功率,还能在实际工作中更好地应对高并发场景下的性能优化问题。
|
1月前
|
存储 安全 Java
jvm 锁的 膨胀过程?锁内存怎么变化的
【10月更文挑战第3天】在Java虚拟机(JVM)中,`synchronized`关键字用于实现同步,确保多个线程在访问共享资源时的一致性和线程安全。JVM对`synchronized`进行了优化,以适应不同的竞争场景,这种优化主要体现在锁的膨胀过程,即从偏向锁到轻量级锁,再到重量级锁的转变。下面我们将详细介绍这一过程以及锁在内存中的变化。
37 4
|
3月前
|
Java Docker 索引
记录一次索引未建立、继而引发一系列的问题、包含索引创建失败、虚拟机中JVM虚拟机内存满的情况
这篇文章记录了作者在分布式微服务项目中遇到的一系列问题,起因是商品服务检索接口测试失败,原因是Elasticsearch索引未找到。文章详细描述了解决过程中遇到的几个关键问题:分词器的安装、Elasticsearch内存溢出的处理,以及最终成功创建`gulimall_product`索引的步骤。作者还分享了使用Postman测试接口的经历,并强调了问题解决过程中遇到的挑战和所花费的时间。
|
1月前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
65 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
1月前
|
存储 缓存 算法
JVM核心知识点整理(内存模型),收藏再看!
JVM核心知识点整理(内存模型),收藏再看!
JVM核心知识点整理(内存模型),收藏再看!