精选Hive高频面试题11道,附答案详细解析(好文收藏)(一)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 精选Hive高频面试题11道,附答案详细解析

1. hive内部表和外部表的区别


未被external修饰的是内部表,被external修饰的为外部表。


区别


  1. 内部表数据由Hive自身管理,外部表数据由HDFS管理;


  1. 内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse),外部表数据的存储位置由自己制定(如果没有LOCATION,Hive将在HDFS上的/user/hive/warehouse文件夹下以外部表的表名创建一个文件夹,并将属于这个表的数据存放在这里);


  1. 删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除。


2. Hive有索引吗


Hive支持索引(3.0版本之前),但是Hive的索引与关系型数据库中的索引并不相同,比如,Hive不支持主键或者外键。并且Hive索引提供的功能很有限,效率也并不高,因此Hive索引很少使用。


  • 索引适用的场景:


适用于不更新的静态字段。以免总是重建索引数据。每次建立、更新数据后,都要重建索引以构建索引表。


  • Hive索引的机制如下:


hive在指定列上建立索引,会产生一张索引表(Hive的一张物理表),里面的字段包括:索引列的值、该值对应的HDFS文件路径、该值在文件中的偏移量。


Hive 0.8版本后引入bitmap索引处理器,这个处理器适用于去重后,值较少的列(例如,某字段的取值只可能是几个枚举值)


因为索引是用空间换时间,索引列的取值过多会导致建立bitmap索引表过大。


注意:Hive中每次有数据时需要及时更新索引,相当于重建一个新表,否则会影响数据查询的效率和准确性,Hive官方文档已经明确表示Hive的索引不推荐被使用,在新版本的Hive中已经被废弃了。


扩展:Hive是在0.7版本之后支持索引的,在0.8版本后引入bitmap索引处理器,在3.0版本开始移除索引的功能,取而代之的是2.3版本开始的物化视图,自动重写的物化视图替代了索引的功能。


3. 运维如何对hive进行调度


  1. 将hive的sql定义在脚本当中;
  2. 使用azkaban或者oozie进行任务的调度;
  3. 监控任务调度页面。


4. ORC、Parquet等列式存储的优点


ORC和Parquet都是高性能的存储方式,这两种存储格式总会带来存储和性能上的提升。


Parquet:


  1. Parquet支持嵌套的数据模型,类似于Protocol Buffers,每一个数据模型的schema包含多个字段,每一个字段有三个属性:重复次数、数据类型和字段名。

重复次数可以是以下三种:required(只出现1次),repeated(出现0次或多次),optional(出现0次或1次)。每一个字段的数据类型可以分成两种:
group(复杂类型)和primitive(基本类型)。


  1. Parquet中没有Map、Array这样的复杂数据结构,但是可以通过repeated和group组合来实现的。


  1. 由于Parquet支持的数据模型比较松散,可能一条记录中存在比较深的嵌套关系,如果为每一条记录都维护一个类似的树状结可能会占用较大的存储空间,因此Dremel论文中提出了一种高效的对于嵌套数据格式的压缩算法:Striping/Assembly算法。通过Striping/Assembly算法,parquet可以使用较少的存储空间表示复杂的嵌套格式,并且通常Repetition level和Definition level都是较小的整数值,可以通过RLE算法对其进行压缩,进一步降低存储空间。


  1. Parquet文件是以二进制方式存储的,是不可以直接读取和修改的,Parquet文件是自解析的,文件中包括该文件的数据和元数据。


ORC:


  1. ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,并且文件中的数据尽可能的压缩以降低存储空间的消耗。


  1. 和Parquet类似,ORC文件也是以二进制方式存储的,所以是不可以直接读取,ORC文件也是自解析的,它包含许多的元数据,这些元数据都是同构ProtoBuffer进行序列化的。


  1. ORC会尽可能合并多个离散的区间尽可能的减少I/O次数。


  1. ORC中使用了更加精确的索引信息,使得在读取数据时可以指定从任意一行开始读取,更细粒度的统计信息使得读取ORC文件跳过整个row group,ORC默认会对任何一块数据和索引信息使用ZLIB压缩,因此ORC文件占用的存储空间也更小。


  1. 在新版本的ORC中也加入了对Bloom Filter的支持,它可以进一
    步提升谓词下推的效率,在Hive 1.2.0版本以后也加入了对此的支
    持。


5. 数据建模用的哪些模型?


1. 星型模型


image.png



星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。


星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:


a. 维表只和事实表关联,维表之间没有关联;

b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;

c. 以事实表为核心,维表围绕核心呈星形分布。


2. 雪花模型


image.png


雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能比星型模型要低。


3. 星座模型


image.png



星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。

数仓建模详细介绍可查看:通俗易懂数仓建模

相关文章
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
108 2
|
5月前
|
缓存 前端开发 中间件
[go 面试] 前端请求到后端API的中间件流程解析
[go 面试] 前端请求到后端API的中间件流程解析
|
5月前
|
并行计算 数据挖掘 大数据
[go 面试] 并行与并发的区别及应用场景解析
[go 面试] 并行与并发的区别及应用场景解析
|
1月前
|
Java 程序员
面试官的加分题:super关键字全解析,轻松应对!
小米,29岁程序员,通过一个关于Animal和Dog类的故事,详细解析了Java中super关键字的多种用法,包括调用父类构造方法、访问父类成员变量及调用父类方法,帮助读者更好地理解和应用super,应对面试挑战。
46 3
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
137 2
|
2月前
|
存储 NoSQL MongoDB
MongoDB面试专题33道解析
大家好,我是 V 哥。今天为大家整理了 MongoDB 面试题,涵盖 NoSQL 数据库基础、MongoDB 的核心概念、集群与分片、备份恢复、性能优化等内容。这些题目和解答不仅适合面试准备,也是日常工作中深入理解 MongoDB 的宝贵资料。希望对大家有所帮助!
|
2月前
|
缓存 前端开发 JavaScript
"面试通关秘籍:深度解析浏览器面试必考问题,从重绘回流到事件委托,让你一举拿下前端 Offer!"
【10月更文挑战第23天】在前端开发面试中,浏览器相关知识是必考内容。本文总结了四个常见问题:浏览器渲染机制、重绘与回流、性能优化及事件委托。通过具体示例和对比分析,帮助求职者更好地理解和准备面试。掌握这些知识点,有助于提升面试表现和实际工作能力。
75 1
|
4月前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
512 37
|
4月前
|
缓存 Android开发 开发者
Android RecycleView 深度解析与面试题梳理
本文详细介绍了Android开发中高效且功能强大的`RecyclerView`,包括其架构概览、工作流程及滑动优化机制,并解析了常见的面试题。通过理解`RecyclerView`的核心组件及其优化技巧,帮助开发者提升应用性能并应对技术面试。
130 8
|
4月前
|
存储 缓存 Android开发
Android RecyclerView 缓存机制深度解析与面试题
本文首发于公众号“AntDream”,详细解析了 `RecyclerView` 的缓存机制,包括多级缓存的原理与流程,并提供了常见面试题及答案。通过本文,你将深入了解 `RecyclerView` 的高性能秘诀,提升列表和网格的开发技能。
90 8

热门文章

最新文章

推荐镜像

更多