一文学完所有的Hive Sql(两万字最全详解)(四)

简介: Hive Sql 详解

       p.空格字符串函数:space


语法: space(int n)
返回值: string
说明:返回长度为n的字符串
hive> select space(10) from tableName;
hive> select length(space(10)) from tableName;
10


       q.重复字符串函数:repeat


语法: repeat(string str, int n)
返回值: string
说明:返回重复n次后的str字符串
hive> select repeat('abc',5) from tableName;
abcabcabcabcabc


       r.首字符ascii函数:ascii


语法: ascii(string str)
返回值: int
说明:返回字符串str第一个字符的ascii码
hive> select ascii('abcde') from tableName;
97


       s.左补足函数:lpad


语法: lpad(string str, int len, string pad)
返回值: string
说明:将str进行用pad进行左补足到len位
hive> select lpad('abc',10,'td') from tableName;
tdtdtdtabc
注意:与GP,ORACLE不同,pad 不能默认


       t.右补足函数:rpad


语法: rpad(string str, int len, string pad)
返回值: string
说明:将str进行用pad进行右补足到len位
hive> select rpad('abc',10,'td') from tableName;
abctdtdtdt

       u.分割字符串函数: split


语法: split(string str, string pat)
返回值: array
说明: 按照pat字符串分割str,会返回分割后的字符串数组
hive> select split('abtcdtef','t') from tableName;
["ab","cd","ef"]


      v.集合查找函数: find_in_set


语法: find_in_set(string str, string strList)
返回值: int
说明: 返回str在strlist第一次出现的位置,strlist是用逗号分割的字符串。如果没有找该str字符,则返回0
hive> select find_in_set('ab','ef,ab,de') from tableName;
2
hive> select find_in_set('at','ef,ab,de') from tableName;
0


复合类型构建操作


  • Map类型构建: map


语法: map (key1, value1, key2, value2, …)
说明:根据输入的key和value对构建map类型
hive> Create table mapTable as select map('100','tom','200','mary') as t from tableName;
hive> describe mapTable;
t       map<string ,string>
hive> select t from tableName;
{"100":"tom","200":"mary"}


  1. Struct类型构建: struct


语法: struct(val1, val2, val3, …)
说明:根据输入的参数构建结构体struct类型
hive> create table struct_table as select struct('tom','mary','tim') as t from tableName;
hive> describe struct_table;
t       struct<col1:string ,col2:string,col3:string>
hive> select t from tableName;
{"col1":"tom","col2":"mary","col3":"tim"}


        b.array类型构建: array


语法: array(val1, val2, …)
说明:根据输入的参数构建数组array类型
hive> create table arr_table as select array("tom","mary","tim") as t from tableName;
hive> describe tableName;
t       array<string>
hive> select t from tableName;
["tom","mary","tim"]


复杂类型访问操作


  1. array类型访问: A[n]


语法: A[n]
操作类型: A为array类型,n为int类型
说明:返回数组A中的第n个变量值。数组的起始下标为0。比如,A是个值为['foo', 'bar']的数组类型,那么A[0]将返回'foo',而A[1]将返回'bar'
hive> create table arr_table2 as select array("tom","mary","tim") as t
 from tableName;
hive> select t[0],t[1] from arr_table2;
tom     mary    tim


        b.map类型访问: M[key]


语法: M[key]
操作类型: M为map类型,key为map中的key值
说明:返回map类型M中,key值为指定值的value值。比如,M是值为{'f' -> 'foo', 'b' -> 'bar', 'all' -> 'foobar'}的map类型,那么M['all']将会返回'foobar'
hive> Create table map_table2 as select map('100','tom','200','mary') as t from tableName;
hive> select t['200'],t['100'] from map_table2;
mary    tom


       c.struct类型访问: S.x


语法: S.x
操作类型: S为struct类型
说明:返回结构体S中的x字段。比如,对于结构体struct foobar {int foo, int bar},foobar.foo返回结构体中的foo字段
hive> create table str_table2 as select struct('tom','mary','tim') as t from tableName;
hive> describe tableName;
t       struct<col1:string ,col2:string,col3:string>
hive> select t.col1,t.col3 from str_table2;
tom     tim


复杂类型长度统计函数


  1. Map类型长度函数: size(Map<k .V>)


语法: size(Map<k .V>)
返回值: int
说明: 返回map类型的长度
hive> select size(t) from map_table2;
2


       b.array类型长度函数: size(Array)


语法: size(Array<T>)
返回值: int
说明: 返回array类型的长度
hive> select size(t) from arr_table2;
4


       c.类型转换函数 ***


类型转换函数: cast
语法: cast(expr as <type>)
返回值: Expected "=" to follow "type"
说明: 返回转换后的数据类型
hive> select cast('1' as bigint) from tableName;
1


hive当中的lateral view 与 explode以及reflect和窗口函数


使用explode函数将hive表中的Map和Array字段数据进行拆分


lateral view用于和split、explode等UDTF一起使用的,能将一行数据拆分成多行数据,在此基础上可以对拆分的数据进行聚合,lateral view首先为原始表的每行调用UDTF,UDTF会把一行拆分成一行或者多行,lateral view在把结果组合,产生一个支持别名表的虚拟表。


其中explode还可以用于将hive一列中复杂的array或者map结构拆分成多行


需求:现在有数据格式如下


zhangsan  child1,child2,child3,child4 k1:v1,k2:v2
lisi  child5,child6,child7,child8 k3:v3,k4:v4


字段之间使用\t分割,需求将所有的child进行拆开成为一列


+----------+--+
| mychild  |
+----------+--+
| child1   |
| child2   |
| child3   |
| child4   |
| child5   |
| child6   |
| child7   |
| child8   |
+----------+--+

将map的key和value也进行拆开,成为如下结果


+-----------+-------------+--+
| mymapkey  | mymapvalue  |
+-----------+-------------+--+
| k1        | v1          |
| k2        | v2          |
| k3        | v3          |
| k4        | v4          |
+-----------+-------------+--+


  1. 创建hive数据库


创建hive数据库
hive (default)> create database hive_explode;
hive (default)> use hive_explode;


       b.创建hive表,然后使用explode拆分map和array


hive (hive_explode)> create  table t3(name string,children array<string>,address Map<string,string>) row format delimited fields terminated by '\t'  collection items terminated by ',' map keys terminated by ':' stored as textFile;


       c.加载数据


node03执行以下命令创建表数据文件
  mkdir -p /export/servers/hivedatas/
  cd /export/servers/hivedatas/
  vim maparray
内容如下:
zhangsan  child1,child2,child3,child4 k1:v1,k2:v2
lisi  child5,child6,child7,child8 k3:v3,k4:v4
hive表当中加载数据
hive (hive_explode)> load data local inpath '/export/servers/hivedatas/maparray' into table t3;


       d.使用explode将hive当中数据拆开


将array当中的数据拆分开
hive (hive_explode)> SELECT explode(children) AS myChild FROM t3;
将map当中的数据拆分开
hive (hive_explode)> SELECT explode(address) AS (myMapKey, myMapValue) FROM t3;


使用explode拆分json字符串


需求: 需求:现在有一些数据格式如下:


a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]


其中字段与字段之间的分隔符是 |


我们要解析得到所有的monthSales对应的值为以下这一列(行转列)


4900

2090

6987


  1. 创建hive表
hive (hive_explode)> create table explode_lateral_view
                   > (`area` string,
                   > `goods_id` string,
                   > `sale_info` string)
                   > ROW FORMAT DELIMITED
                   > FIELDS TERMINATED BY '|'
                   > STORED AS textfile;


       b.准备数据并加载数据


准备数据如下
cd /export/servers/hivedatas
vim explode_json
a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]
加载数据到hive表当中去
hive (hive_explode)> load data local inpath '/export/servers/hivedatas/explode_json' overwrite into table explode_lateral_view;


       c.使用explode拆分Array


hive (hive_explode)> select explode(split(goods_id,',')) as goods_id from explode_lateral_view;


       d.使用explode拆解Map


hive (hive_explode)> select explode(split(area,',')) as area from explode_lateral_view;


       e.拆解json字段


hive (hive_explode)> select explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')) as  sale_info from explode_lateral_view;
然后我们想用get_json_object来获取key为monthSales的数据:
hive (hive_explode)> select get_json_object(explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')),'$.monthSales') as  sale_info from explode_lateral_view;
然后挂了FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
UDTF explode不能写在别的函数内
如果你这么写,想查两个字段,select explode(split(area,',')) as area,good_id from explode_lateral_view;
会报错FAILED: SemanticException 1:40 Only a single expression in the SELECT clause is supported with UDTF's. Error encountered near token 'good_id'
使用UDTF的时候,只支持一个字段,这时候就需要LATERAL VIEW出场了


配合LATERAL VIEW使用


配合lateral view查询多个字段


hive (hive_explode)> select goods_id2,sale_info from explode_lateral_view LATERAL VIEW explode(split(goods_id,','))goods as goods_id2;
其中LATERAL VIEW explode(split(goods_id,','))goods相当于一个虚拟表,与原表explode_lateral_view笛卡尔积关联


也可以多重使用


hive (hive_explode)> select goods_id2,sale_info,area2
                    from explode_lateral_view 
                    LATERAL VIEW explode(split(goods_id,','))goods as goods_id2 
                    LATERAL VIEW explode(split(area,','))area as area2;也是三个表笛卡尔积的结果


最终,我们可以通过下面的句子,把这个json格式的一行数据,完全转换成二维表的方式展现


hive (hive_explode)> select get_json_object(concat('{',sale_info_1,'}'),'$.source') as source,get_json_object(concat('{',sale_info_1,'}'),'$.monthSales') as monthSales,get_json_object(concat('{',sale_info_1,'}'),'$.userCount') as monthSales,get_json_object(concat('{',sale_info_1,'}'),'$.score') as monthSales from explode_lateral_view LATERAL VIEW explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{'))sale_info as sale_info_1;
相关文章
|
8月前
|
SQL HIVE
【Hive SQL 每日一题】环比增长率、环比增长率、复合增长率
该文介绍了环比增长率、同比增长率和复合增长率的概念及计算公式,并提供了SQL代码示例来计算商品的月度增长率。环比增长率是相邻两期数据的增长率,同比增长率是与去年同期相比的增长率,复合增长率则是连续时间段内平均增长的速率。文章还包含了一组销售数据用于演示如何运用这些增长率进行计算。
292 4
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
111 3
|
3月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
88 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
150 0
|
5月前
|
SQL 存储 分布式计算
插入Hive表数据SQL
【8月更文挑战第10天】
|
5月前
|
SQL 物联网 数据处理
"颠覆传统,Hive SQL与Flink激情碰撞!解锁流批一体数据处理新纪元,让数据决策力瞬间爆表,你准备好了吗?"
【8月更文挑战第9天】数据时代,实时性和准确性至关重要。传统上,批处理与流处理各司其职,但Apache Flink打破了这一界限,尤其Flink与Hive SQL的结合,开创了流批一体的数据处理新时代。这不仅简化了数据处理流程,还极大提升了效率和灵活性。例如,通过Flink SQL,可以轻松实现流数据与批数据的融合分析,无需在两者间切换。这种融合不仅降低了技术门槛,还为企业提供了更强大的数据支持,无论是在金融、电商还是物联网领域,都将发挥巨大作用。
74 6
|
6月前
|
SQL 分布式计算 关系型数据库
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
87 2
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何使用Flink SQL连接带有Kerberos认证的Hive
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
SQL HIVE
【Hive SQL】字符串操作函数你真的会用吗?
本文介绍了SQL中判断字符串是否包含子串的几种方法。`IN`函数判断元素是否完全等于给定元素组中的某项,而非包含关系。`INSTR`和`LOCATE`函数返回子串在字符串中首次出现的位置,用于检测是否存在子串。`SUBSTR`则用于提取字符串的子串。`LIKE`用于模糊匹配,常与通配符配合使用。注意`IN`并非用于判断子串包含。
609 3