Google Earth Engine ——数据全解析专辑(COPERNICUS/CORINE/V18_5_1/100m)欧洲土地利用数据1986-2012

简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/CORINE/V18_5_1/100m)欧洲土地利用数据1986-2012

The CORINE (coordination of information on the environment) Land Cover (CLC) inventory was initiated in 1985 to standardize data collection on land in Europe to support environmental policy development. The project is coordinated by the European Environment Agency (EEA) in the frame of the EU Copernicus programme and implemented by national teams. The number of participating countries has increased over time currently including 33 (EEA) member countries and six cooperating countries (EEA39) with a total area of over 5.8 Mkm2.


The reference year of the first CLC inventory was 1990 and the first update created in 2000. Later, the update cycle has become 6 years. Satellite imagery provides the geometrical and thematic basis for mapping with in-situ data as essential ancillary information. The basic technical parameters of CLC (i.e. 44 classes in nomenclature, 25 hectares minimum mapping unit (MMU), and 100 meters minimum mapping width) have not changed since the beginning, therefore the results of the different inventories are comparable.


CORINE(环境信息协调)土地覆盖 (CLC) 清单于 1985 年启动,旨在标准化欧洲土地数据收集,以支持环境政策制定。该项目由欧洲环境署 (EEA) 在欧盟哥白尼计划的框架内协调,并由国家团队实施。随着时间的推移,参与国的数量不断增加,目前包括 33 个(欧洲经济区)成员国和六个合作国家(EEA39),总面积超过 5.8 平方公里。


第一次 CLC 清单的参考年份是 1990 年,第一次更新创建于 2000 年。后来,更新周期变成了 6 年。卫星图像为以实地数据作为基本辅助信息的制图提供了几何和专题基础。 CLC的基本技术参数(即44类命名、25公顷最小制图单位(MMU)、100米最小制图宽度)自开始以来没有变化,因此不同清单的结果具有可比性。

Dataset Availability

1986-01-01T00:00:00 - 2012-12-31T00:00:00

Dataset Provider

EEA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/CORINE/V18_5_1/100m")

Resolution

100 meters

Bands Table

Name Description
landcover Land cover


Class Table: landcover

Value Color Color Value Description
1 #E6004D Artificial surfaces > Urban fabric > Continuous urban fabric
2 #FF0000 Artificial surfaces > Urban fabric > Discontinuous urban fabric
3 #CC4DF2 Artificial surfaces > Industrial, commercial, and transport units > Industrial or commercial units
4 #CC0000 Artificial surfaces > Industrial, commercial, and transport units > Road and rail networks and associated land
5 #E6CCCC Artificial surfaces > Industrial, commercial, and transport units > Port areas
6 #E6CCE6 Artificial surfaces > Industrial, commercial, and transport units > Airports
7 #A600CC Artificial surfaces > Mine, dump, and construction sites > Mineral extraction sites
8 #A64DCC Artificial surfaces > Mine, dump, and construction sites > Dump sites
9 #FF4DFF Artificial surfaces > Mine, dump, and construction sites > Construction sites
10 #FFA6FF Artificial surfaces > Artificial, non-agricultural vegetated areas > Green urban areas
11 #FFE6FF Artificial surfaces > Artificial, non-agricultural vegetated areas > Sport and leisure facilities
12 #FFFFA8 Agricultural areas > Arable land > Non-irrigated arable land
13 #FFFF00 Agricultural areas > Arable land > Permanently irrigated land
14 #E6E600 Agricultural areas > Arable land > Rice fields
15 #E68000 Agricultural areas > Permanent crops > Vineyards
16 #F2A64D Agricultural areas > Permanent crops > Fruit trees and berry plantations
17 #E6A600 Agricultural areas > Permanent crops > Olive groves
18 #E6E64D Agricultural areas > Pastures > Pastures
19 #FFE6A6 Agricultural areas > Heterogeneous agricultural areas > Annual crops associated with permanent crops
20 #FFE64D Agricultural areas > Heterogeneous agricultural areas > Complex cultivation patterns
21 #E6CC4D Agricultural areas > Heterogeneous agricultural areas > Land principally occupied by agriculture, with significant areas of natural vegetation
22 #F2CCA6 Agricultural areas > Heterogeneous agricultural areas > Agro-forestry areas
23 #80FF00 Forest and semi natural areas > Forests > Broad-leaved forest
24 #00A600 Forest and semi natural areas > Forests > Coniferous forest
25 #4DFF00 Forest and semi natural areas > Forests > Mixed forest
26 #CCF24D Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Natural grasslands
27 #A6FF80 Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Moors and heathland
28 #A6E64D Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Sclerophyllous vegetation
29 #A6F200 Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Transitional woodland-shrub
30 #E6E6E6 Forest and semi natural areas > Open spaces with little or no vegetation > Beaches, dunes, sands
31 #CCCCCC Forest and semi natural areas > Open spaces with little or no vegetation > Bare rocks
32 #CCFFCC Forest and semi natural areas > Open spaces with little or no vegetation > Sparsely vegetated areas
33 #000000 Forest and semi natural areas > Open spaces with little or no vegetation > Burnt areas
34 #A6E6CC Forest and semi natural areas > Open spaces with little or no vegetation > Glaciers and perpetual snow
35 #A6A6FF Wetlands > Inland wetlands > Inland marshes
36 #4D4DFF Wetlands > Inland wetlands > Peat bogs
37 #CCCCFF Wetlands > Maritime wetlands > Salt marshes
38 #E6E6FF Wetlands > Maritime wetlands > Salines
39 #A6A6E6 Wetlands > Maritime wetlands > Intertidal flats
40 #00CCF2 Water bodies > Inland waters > Water courses
41 #80F2E6 Water bodies > Inland waters > Water bodies
42 #00FFA6 Water bodies > Marine waters > Coastal lagoons
43 #A6FFE6 Water bodies > Marine waters > Estuaries
44 #E6F2FF Water bodies > Marine waters > Sea and ocean


影像属性:

Name Type Description
landcover_class_names List of Strings Land cover class names
landcover_class_palette List of Strings Land cover class palette
landcover_class_values List of Ints Value of the land cover classification.

 

影像来源:

Access to data is based on a principle of full, open, and free access as established by the Copernicus data and information policy Regulation (EU) No 1159/2013 of 12 July 2013. For more information visit: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012?tab=metadata.


示例代码:

var dataset = ee.Image('COPERNICUS/CORINE/V18_5_1/100m/2012');
var landCover = dataset.select('landcover');
Map.setCenter(16.436, 39.825, 6);
Map.addLayer(landCover, {}, 'Land Cover');


影像:


相关文章
|
7月前
|
数据采集 JSON 数据可视化
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
457 4
JSON数据解析实战:从嵌套结构到结构化表格
|
7月前
|
JSON 监控 网络协议
Bilibili直播信息流:连接方法与数据解析
本文详细介绍了自行实现B站直播WebSocket连接的完整流程。解析了基于WebSocket的应用层协议结构,涵盖认证包构建、心跳机制维护及数据包解析步骤,为开发者定制直播数据监控提供了完整技术方案。
|
7月前
|
机器学习/深度学习 JSON 算法
淘宝拍立淘按图搜索API接口系列的应用与数据解析
淘宝拍立淘按图搜索API接口是阿里巴巴旗下淘宝平台提供的一项基于图像识别技术的创新服务。以下是对该接口系列的应用与数据解析的详细分析
|
7月前
|
缓存 监控 搜索推荐
【实战解析】smallredbook.item_get_video API:小红书视频数据获取与电商应用指南
本文介绍小红书官方API——`smallredbook.item_get_video`的功能与使用方法。该接口可获取笔记视频详情,包括无水印直链、封面图、时长、文本描述、标签及互动数据等,并支持电商场景分析。调用需提供`key`、`secret`和`num_iid`参数,返回字段涵盖视频链接、标题、标签及用户信息等。同时,文章提供了电商实战技巧,如竞品监控与个性化推荐,并列出合规注意事项及替代方案对比。最后解答了常见问题,如笔记ID获取与视频链接时效性等。
|
7月前
|
存储 缓存 监控
如何高效爬取天猫商品数据?官方API与非官方接口全解析
本文介绍两种天猫商品数据爬取方案:官方API和非官方接口。官方API合法合规,适合企业长期使用,需申请企业资质;非官方接口适合快速验证需求,但需应对反爬机制。详细内容涵盖开发步骤、Python实现示例、反爬策略、数据解析与存储、注意事项及扩展应用场景。推荐工具链包括Playwright、aiohttp、lxml等。如需进一步帮助,请联系作者。
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
4549 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
235 0
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
341 0
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
191 0
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
725 0

热门文章

最新文章

推荐镜像

更多
  • DNS
  • 下一篇
    oss教程