Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集

简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集

NRTI/L3_CLOUD

 

This dataset provides near real-time high-resolution imagery of cloud parameters.

The TROPOMI/S5P cloud properties retrieval is based on the OCRA and ROCINN algorithms currently being used in the operational GOME and GOME-2 products. OCRA retrieves the cloud fraction using measurements in the UV/VIS spectral regions and ROCINN retrieves the cloud height (pressure) and optical thickness (albedo) using measurements in and around the oxygen A-band at 760 nm. Version 3.0 of the algorithms are used, which are based on a more realistic treatment of clouds as optically uniform layers of light-scattering particles. Additionally, the cloud parameters are also provided for a cloud model which assumes the cloud to be a Lambertian reflecting boundary. [More information]


该数据集提供了云参数的近实时高分辨率图像。


TROPOMI/S5P 云属性检索基于目前在运营的 GOME 和 GOME-2 产品中使用的 OCRA 和 ROCINN 算法。 OCRA 使用 UV/VIS 光谱区域中的测量值来检索云分数,ROCINN 使用 760 nm 氧 A 波段内和周围的测量值来检索云高度(压力)和光学厚度(反照率)。使用了 3.0 版算法,该算法基于将云视为光散射粒子的光学均匀层的更真实处理。此外,还为假设云是朗伯反射边界的云模型提供了云参数。


NRTI L3 Product

为了制作我们的 NRTI L3 产品,我们使用 harpconvert 对数据进行网格化。

To make our NRTI L3 products, we use harpconvert to grid the data.

Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'cloud_fraction>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(cloud_fraction,cloud_top_pressure,cloud_top_height,
cloud_base_pressure,cloud_base_height,cloud_optical_depth,surface_albedo,
sensor_azimuth_angle,sensor_zenith_angle,solar_azimuth_angle,
solar_zenith_angle)'
S5P_NRTI_L2__CLOUD__20190208T230503_20190208T231003_06860_01_010105_20190209T005255.nc
output.h5


  • Assets between the dates 2018-07-10 and 2018-07-18 are missing due to non-standard structure of product files.

Dataset Availability

2018-07-05T23:24:16 - 2021-09-05T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_CLOUD")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
cloud_fraction Retrieved effective radiometric cloud fraction 0 1 fraction
cloud_top_pressure Retrieved atmospheric pressure at the level of cloud top 12109 101299 Pa
cloud_top_height Retrieved altitude of the cloud top 9 15471 m
cloud_base_pressure Cloud base pressure 14169 101299 Pa
cloud_base_height Cloud base height 9 14545 m
cloud_optical_depth Retrieved cloud optical depth 1 250 m
surface_albedo Surface albedo 0 1
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.09 67 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 80 degrees

* = Values are estimated


影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.
CLOUD_MODE String Tells which model was used to generate this dataset, the CAL (Clouds As Layers) model or the CRB (Clouds as Reflecting Boundaries) model. Valid values of this property are "cal" or "crb", respectively, with "cal" being the default.
STATUS_MET_2D String This dataset uses some dynamic auxiliary data from the European Centre for Medium-Range Weather Forecasts. If the ECMWF data was used, this field will have the value 'Nominal'. If the ECMWF data was not used, a fallback solution was used, and this field will have the value of "Fallback".


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CLOUD')
  .select('cloud_fraction')
  .filterDate('2019-06-01', '2019-06-02');
var band_viz = {
  min: 0,
  max: 0.95,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P Cloud');
Map.setCenter(-58.14, -10.47, 2);


影像:



相关文章
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
4549 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
523 0
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
1101 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
11月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
282 2
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
683 29
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
201 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
7月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
7月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

热门文章

最新文章

推荐镜像

更多
  • DNS
  • 下一篇
    oss教程