Google Earth Engine ——数据全解析专辑(世界第 4 版网格化人口 (GPWv4) 修订版30 弧秒1公里格网)人口计数和密度网格的输入单元的平均面积数据集

简介: Google Earth Engine ——数据全解析专辑(世界第 4 版网格化人口 (GPWv4) 修订版30 弧秒1公里格网)人口计数和密度网格的输入单元的平均面积数据集

The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.


The mean area of the input unit(s) from which population count and density grids are created.


世界第 4 版网格化人口 (GPWv4) 修订版 11 对 2000、2005、2010、2015 和 2020 年在 30 弧秒(约 1 公里)网格单元上的全球人口分布进行建模。使用人口普查和行政单位的人口比例分配将人口分配到单元格。人口输入数据是在 2010 年普查结果中可用的最详细的空间分辨率收集的,普查结果发生在 2005 年和 2014 年之间。输入数据被外推以产生每个建模年份的人口估计值。


创建人口计数和密度网格的输入单元的平均面积。

Resolution

30 arc seconds

Bands Table

Name Description Min* Max*
mean_administrative_unit_area Displays a quantitative surface that indicates the size of the input units in square kilometers from which population count and density grids are derived. 0 767642


代码:

var dataset = ee.Image("CIESIN/GPWv411/GPW_Mean_Administrative_Unit_Area");
var raster = dataset.select('mean_administrative_unit_area');
var raster_vis = {
  "min": 0.0,
  "palette": [
    "ffffff",
    "747474",
    "656565",
    "3c3c3c",
    "2f2f2f",
    "000000"
  ],
  "max": 40000.0
};
Map.setCenter(-88.6, 26.4, 1);
Map.addLayer(raster, raster_vis, 'mean_administrative_unit_area');


相关文章
|
10月前
|
数据采集 JSON 数据可视化
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
621 4
JSON数据解析实战:从嵌套结构到结构化表格
|
10月前
|
JSON 监控 网络协议
Bilibili直播信息流:连接方法与数据解析
本文详细介绍了自行实现B站直播WebSocket连接的完整流程。解析了基于WebSocket的应用层协议结构,涵盖认证包构建、心跳机制维护及数据包解析步骤,为开发者定制直播数据监控提供了完整技术方案。
|
10月前
|
缓存 监控 搜索推荐
【实战解析】smallredbook.item_get_video API:小红书视频数据获取与电商应用指南
本文介绍小红书官方API——`smallredbook.item_get_video`的功能与使用方法。该接口可获取笔记视频详情,包括无水印直链、封面图、时长、文本描述、标签及互动数据等,并支持电商场景分析。调用需提供`key`、`secret`和`num_iid`参数,返回字段涵盖视频链接、标题、标签及用户信息等。同时,文章提供了电商实战技巧,如竞品监控与个性化推荐,并列出合规注意事项及替代方案对比。最后解答了常见问题,如笔记ID获取与视频链接时效性等。
|
10月前
|
存储 缓存 监控
如何高效爬取天猫商品数据?官方API与非官方接口全解析
本文介绍两种天猫商品数据爬取方案:官方API和非官方接口。官方API合法合规,适合企业长期使用,需申请企业资质;非官方接口适合快速验证需求,但需应对反爬机制。详细内容涵盖开发步骤、Python实现示例、反爬策略、数据解析与存储、注意事项及扩展应用场景。推荐工具链包括Playwright、aiohttp、lxml等。如需进一步帮助,请联系作者。
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
5189 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
310 0
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
392 0
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
246 0
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
858 0
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
474 0

热门文章

最新文章

推荐镜像

更多
  • DNS