Redis去重方法

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 这篇文章主要介绍了Redis实现唯一计数的3种方法分享,本文讲解了基于SET、基于 bit、基于 HyperLogLog三种方法,需要的朋友可以参考下唯一计数是网站系统中十分常见的一个功能特性,例如网站需要统计每天访问的人数 unique visitor (也就是 UV)。计数问题很常见,但解决起来可能十分复杂:一是需要计数的量可能很大,比如大型的站点每天有数百万的人访问,数据量相当大;二是通常还希望扩展计数的维度,比如除了需要每天的 UV,还想知道每周或每月的 UV,这样导致计算十分复杂。

这篇文章主要介绍了Redis实现唯一计数的3种方法分享,本文讲解了基于SET、基于 bit、基于 HyperLogLog三种方法,需要的朋友可以参考下


唯一计数是网站系统中十分常见的一个功能特性,例如网站需要统计每天访问的人数 unique visitor (也就是 UV)。计数问题很常见,但解决起来可能十分复杂:一是需要计数的量可能很大,比如大型的站点每天有数百万的人访问,数据量相当大;二是通常还希望扩展计数的维度,比如除了需要每天的 UV,还想知道每周或每月的 UV,这样导致计算十分复杂。


在关系数据库存储的系统里,实现唯一计数的方法就是 select count(distinct <item_id>),它十分简单,但是如果数据量很大,这个语句执行是很慢的。用关系数据库另外一个问题是插入数据性能也不高。


Redis 解决这类计数问题得心应手,相比关系数据库速度更快,消耗资源更少,甚至提供了 3 种不同的方法。


1.基于 set


Redis 的 set 用于保存唯一的数据集合,通过它可以快速判断某一个元素是否存在于集合中,也可以快速计算某一个集合的元素个数,另外和可以合并集合到一个新的集合中。涉及的命令如下:


复制代码 代码如下:

SISMEMBER key member  # 判断 member 是否存在
SADD key member  # 往集合中加入 member
SCARD key   # 获取集合元素个数


基于 set 的方法简单有效,计数精确,适用面广,易于理解,它的缺点是消耗资源比较大(当然比起关系数据库是少很多的),如果元素个数很大(比如上亿的计数),消耗内存很恐怖。


2.基于 bit


Redis 的 bit 可以用于实现比 set 内存高度压缩的计数,它通过一个 bit 1 或 0 来存储某个元素是否存在信息。例如网站唯一访客计数,可以把 user_id 作为 bit 的偏移量 offset,设置为 1 表示有访问,使用 1 MB的空间就可以存放 800 多万用户的一天访问计数情况。涉及的命令如下:

复制代码 代码如下:

SETBIT key offset value  # 设置位信息
GETBIT key offset        # 获取位信息
BITCOUNT key [start end] # 计数
BITOP operation destkey key [key ...]  # 位图合并


基于 bit 的方法比起 set 空间消耗小得多,但是它要求元素能否简单映射为位偏移,适用面窄了不少,另外它消耗的空间取决于最大偏移量,和计数值无关,如果最大偏移量很大,消耗内存也相当可观。


3.基于 HyperLogLog


实现超大数据量精确的唯一计数都是比较困难的,但是如果只是近似的话,计算科学里有很多高效的算法,其中 HyperLogLog Counting 就是其中非常著名的算法,它可以仅仅使用 12 k左右的内存,实现上亿的唯一计数,而且误差控制在百分之一左右。涉及的命令如下:


复制代码 代码如下:

PFADD key element [element ...]  # 加入元素
PFCOUNT key [key ...]   # 计数
这种计数方法真的很神奇,我也没有彻底弄明白,有兴趣可以深入研究相关文章。

redis 提供的这三种唯一计数方式各有优劣,可以充分满足不同情况下的计数要求。


4. 基于bloomfilter


BloomFilter是利用类似位图或者位集合数据结构来存储数据,利用位数组来简洁的表示一个集合,并且能够快速的判断一个元素是不是已经存在于这个集合。虽然BloomFilter不是100%准确,但是可以通过调节参数,使用Hash函数的个数,位数组的大小来降低失误率。这样调节完全可以把失误率降低到接近于0。可以满足大部分场景了。

redis使用布隆过滤器需要安装插件:centos中安装redis插件bloom-filter

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
7月前
|
存储 缓存 NoSQL
利用Redis List实现数据库分页快速查询的有效方法
利用Redis List实现数据库分页快速查询的有效方法
|
7月前
|
设计模式 NoSQL Java
常用的设计模式以及操作Redis、MySQL数据库、各种MQ、数据类型转换的方法
常用的设计模式以及操作Redis、MySQL数据库、各种MQ、数据类型转换的方法
|
4月前
|
NoSQL Ubuntu 安全
在Ubuntu 18.04上安装和保护Redis的方法
在Ubuntu 18.04上安装和保护Redis的方法
98 0
|
1月前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
64 10
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透的检测方法与分析
【10月更文挑战第23天】通过以上对 Redis 缓存穿透检测方法的深入探讨,我们对如何及时发现和处理这一问题有了更全面的认识。在实际应用中,我们需要综合运用多种检测手段,并结合业务场景和实际情况进行分析,以确保能够准确、及时地检测到缓存穿透现象,并采取有效的措施加以解决。同时,要不断优化和改进检测方法,提高检测的准确性和效率,为系统的稳定运行提供有力保障。
50 5
|
2月前
|
缓存 NoSQL 算法
解决Redis缓存雪崩问题的有效方法
解决Redis缓存雪崩问题的有效方法
46 1
|
3月前
|
存储 缓存 NoSQL
解决Redis缓存击穿问题的技术方法
解决Redis缓存击穿问题的技术方法
78 2
|
3月前
|
缓存 NoSQL Redis
解决 Redis 缓存穿透问题的有效方法
解决 Redis 缓存穿透问题的有效方法
56 2
|
3月前
|
NoSQL 安全 Java
解决Unknown redis exception及event executor terminated错误的方法
解决这类问题时,保持耐心和细致是关键。通常,通过系统地检查和排除潜在原因,大多数问题最终都能被解决。
510 1
|
5月前
|
存储 缓存 NoSQL
Redis问题之一致性Hash是如何解决哈希+取余方法中的稳定性问题的
Redis问题之一致性Hash是如何解决哈希+取余方法中的稳定性问题的
69 10