格式化Java内存工具JOL输出

简介: 格式化Java内存工具JOL输出
import org.openjdk.jol.info.ClassLayout;
import java.nio.ByteOrder;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class PrintObjectHeader {
    /**
     * Get binary data
     *
     * @param o
     * @return
     */
    public static String getObjectHeader(Object o) {
        ByteOrder order = ByteOrder.nativeOrder();//Byte order
        String table = ClassLayout.parseInstance(o).toPrintable();
        Pattern p = Pattern.compile("(0|1){8}");
        Matcher matcher = p.matcher(table);
        List<String> header = new ArrayList<String>();
        while (matcher.find()) {
            header.add(matcher.group());
        }
        //Little-endian machines, need to traverse in reverse
        StringBuilder sb = new StringBuilder();
        if (order.equals(ByteOrder.LITTLE_ENDIAN)) {
            Collections.reverse(header);
        }
        for (String s : header) {
            sb.append(s).append(" ");
        }
        return sb.toString().trim();
    }
    /**
     * Parsing object header function for 64bit jvm
     * In 64bit jvm, the object header has two parts: Mark Word and Class Pointer, Mark Word takes 8 bytes, Class Pointer takes 4 bytes
     *
     * @param s Binary string of object header (each 8 bits, separated by a space)
     */
    public static void parseObjectHeader(String s) {
        String[] tmp = s.split(" ");
        System.out.print("Class Pointer: ");
        for (int i = 0; i < 4; ++i) {
            System.out.print(tmp[i] + " ");
        }
        System.out.println("\nMark Word:");
        if (tmp[11].charAt(5) == '0' && tmp[11].substring(6).equals("01")) {//0 01 lock-free state, regardless of GC mark
            //notice: Mark word structure without lock: unused(25bit) + hashcode(31bit) + unused(1bit) + age(4bit) + biased_lock_flag(1bit) + lock_type(2bit)
            // The reason why hashcode only needs 31bit is: hashcode can only be greater than or equal to 0, eliminating the negative range, so you can use 31bit to store
            System.out.print("\thashcode (31bit): ");
            System.out.print(tmp[7].substring(1) + " ");
            for (int i = 8; i < 11; ++i) System.out.print(tmp[i] + " ");
            System.out.println();
        } else if (tmp[11].charAt(5) == '1' && tmp[11].substring(6).equals("01")) {//1 01, which is the case of biased lock
            //notice: The object is in a biased lock, its structure is: ThreadID(54bit) + epoch(2bit) + unused(1bit) + age(4bit) + biased_lock_flag(1bit) + lock_type(2bit)
            // ThreadID here is the thread ID holding the biased lock, epoch: a timestamp of the biased lock, used for optimization of the biased lock
            System.out.print("\tThreadID(54bit): ");
            for (int i = 4; i < 10; ++i) System.out.print(tmp[i] + " ");
            System.out.println(tmp[10].substring(0, 6));
            System.out.println("\tepoch: " + tmp[10].substring(6));
        } else {//In the case of lightweight locks or heavyweight locks, regardless of the GC mark
            //notice: JavaThread*(62bit,include zero padding) + lock_type(2bit)
            // At this point, JavaThread* points to the monitor of the lock record/heavyweight lock in the stack
            System.out.print("\tjavaThread*(62bit,include zero padding): ");
            for (int i = 4; i < 11; ++i) System.out.print(tmp[i] + " ");
            System.out.println(tmp[11].substring(0, 6));
            System.out.println("\tLockFlag (2bit): " + tmp[11].substring(6));
            System.out.println();
            return;
        }
        System.out.println("\tage (4bit): " + tmp[11].substring(1, 5));
        System.out.println("\tbiasedLockFlag (1bit): " + tmp[11].charAt(5));
        System.out.println("\tLockFlag (2bit): " + tmp[11].substring(6));
        System.out.println();
    }
    public static void printObjectHeader(Object o) {
        if (o == null) {
            System.out.println("null object.");
            return;
        }
        parseObjectHeader(getObjectHeader(o));
    }
}
相关文章
|
12天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
20 0
|
19天前
|
SQL Java 索引
java小工具util系列2:字符串工具
java小工具util系列2:字符串工具
135 83
|
16天前
|
Java 开发者 微服务
Spring Boot 入门:简化 Java Web 开发的强大工具
Spring Boot 是一个开源的 Java 基础框架,用于创建独立、生产级别的基于Spring框架的应用程序。它旨在简化Spring应用的初始搭建以及开发过程。
35 6
Spring Boot 入门:简化 Java Web 开发的强大工具
|
19天前
|
Java 数据库
java小工具util系列1:日期和字符串转换工具
java小工具util系列1:日期和字符串转换工具
51 26
|
14天前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
31 8
|
12天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
16天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
44 5
|
14天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
14天前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
19天前
|
JavaScript
如何使用内存快照分析工具来分析Node.js应用的内存问题?
需要注意的是,不同的内存快照分析工具可能具有不同的功能和操作方式,在使用时需要根据具体工具的说明和特点进行灵活运用。
38 3