大数据学习路线

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
实时计算 Flink 版,5000CU*H 3个月
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: JavaSE,数据结构与算法(计算机行业必备),MySQL,Redis,ES(数据库这些可以看项目,也可以自己熟练一两个),Linux,Shell(这个可以后期补),Hadoop,Zookeeper,Hive,Flume,Kafka,HBase,Scala(Spark是Scala写的,会Scala做相关的项目会更容易入手),Spark,Flink(这个是找工作时有面试官问过几次liao不liao解,所以找完工作才开始接触学习),相关项目。

前言

要从事计算机行业的工作,不管是什么工作,开发、测试、还是算法等,都是要有一门自己比较熟练的编程语言,编程语言可以是C语言、Java、C++等,只要是和你后续工作所相关的就可以(后续用到其他语言的话,你有一门语言基础了,学起来就快了)。一般初学者入门语言大多都会选择Java、C语言、C++或者Python,而且现在网上有很多好的视频,可以供初学者学习使用。关于学习视频或者资料的选择,知乎或者百度等都有很多讲解了,也可以跟师兄师姐咨询,这样可以少走很多弯路,当然,有人说,走一些弯路总是有好处的,但是我这里说的弯路不是说不犯错误,不调bug,而是指学习资料以及一些知识点的偏重点,这样可以尽量节约一部分时间,刚开始时,总会有点迷,而且当你真正投入进去学习时,会发现时间总是不够用。


下面就说一下我自己从Java开发到大数据开发的曲折学习之路(狗头保命.jpg)。


因为我现在是做大数据相关的工作了,所以Java后端涉及到的一些SSM框架等知识点我就不介绍了,毕竟后续一段时间也没有做了。自己看过的大数据学习相关的视频+资料大概是200G-300G吧,从Linux->Hadoop->。。。->Spark->项目,还有就是一些面试文

档,面经等。一些视频看了两遍或者更多,跟着学,跟着敲代码,做项目,准备面试。


涉及到需要学习的东西包括:JavaSE,数据结构与算法(计算机行业必备),MySQL,Redis,ES(数据库这些可以看项目,也可以自己熟练一两个),Linux,Shell(这个可以后期补),Hadoop,Zookeeper,Hive,Flume,Kafka,HBase,Scala(Spark是Scala写的,会Scala做相关的项目会更容易入手),Spark,Flink(这个是找工作时有面试官问过几次liao不liao解,所以找完工作才开始接触学习),相关项目。


编程语言阶段学习


如果是零基础的话,建议还是从视频开始入门比较好,毕竟一上来就看教材,这样有些代码的来龙去脉可能不是很了解。如果是有一些编程语言基础的话,从视频开始也会更简单,一些for、while循环你都知道了,学起来也会快很多。


JavaSE我是选择的黑马刘意的为主,因为刚刚开始学Java看过一本从《Java从入门到精通》,没什么感觉,后续又在看了慕课网的Java初级视频,还是没感觉出来啥(当时就有点怀疑自己了。。。),可能有点没进入状态。


还好后续找了黑马刘意老师的JavaSE视频(我是看的2015年版本,那时候19版还没出),觉得他讲的真的是很好很详细,每个知识点都会有例子,也都会带你敲代码,做测试,可能前面有C语言基础,然后也看过Java的一些语法,所以学起来还是比较顺利,后面的IO流、多线程等知识点时,也有看书看博客,或者看看其他老师的课程,讲解的可能自己比较容易接受就可以,反正都是多尝试(下面会给出视频链接),尽量懂一些,后续可以回头来复习。JavaSE相关的视频,先看一遍,后续有时间建议再看一遍,而且这些经典的视频,看两遍真的是享受。


如果有一定基础了的,JavaSE前面七八天的视频可以加速看,但是不懂的一定要停下开仔细想想,零基础的还是尽量不要加速吧,慢慢来稳些。后面的视频建议还是跟着视频来,尽量不要加速,代码尽量都敲一敲,第一遍基本上一个月到一个半月可以结束。

JavaSE可以说是很基础也很重要的东西,主要重点包括面向对象、集合(List、Map等),IO流,String/StringBuilder/StringBuffer、反射、多线程,这些最好是都要熟悉一些,面试也是重点。


JavaSE之后,如果你是要走前端或后端开发路线的话,可以跟着一些网上的视频继续学习,这里我就不多做介绍了。

=分割线,Scala可以后续Spark阶段再接触学习


Scala的学习,Scala是一门多范式 (multi-paradigm) 的编程语言,Scala支持面向对象和函数式编程,最主要的是后续Spark的内容需要用到Scala,所以前面学习了JavaSE,到Spark学习之前,再把Scala学习一波,美滋滋,而且Scala可以和Java进行无缝对接,混合使用,更是爽歪歪。后续Spark学习时基本都是用的Scala,也可能是和Java结合使用,所以Spark之前建议还是先学一波Scala,而且Scala用起来真是很舒服(wordcount一行代码搞定),适合迭代式计算,对数据处理有很大帮助,不过Scala看代码很容易看懂,但是学起来还是挺难的,比如样例类(case class)用起来真是nice,但是隐式转换学起来就相对比较难。学习Scala的建议:1. 学习scala 特有的语法,2. 搞清楚scala和java区别,3. 了解如何规范的使用scala。Scala对学习Spark是很重要的(后面Flink也是要用),虽然现在很多公司还是用Java开发比较多,而且Spark是Scala写的,如果要读源码,会Scala还是很重要的(至少要看得懂代码)。


Scala主要重点包括:隐式转换和隐式参数、模式匹配、函数式编程。这里我看的是尚硅谷韩老师的Scala视频,韩老师讲的真的很不错,五星推荐,哈哈。


也许有人会觉得Python也是需要的,但是学习阶段,可能用Java还是比较多,面试也基本都是问Java相关的内容,所以Python后续工作会用到的话,再看看Python的内容吧。


视频链接


刘意JavaSE(2015版)


刘意JavaSE(2019-IDEA版)


毕向东JavaSE


尚硅谷康师傅JavaSE(2019-IDEA版)


尚硅谷韩老师Scala


大数据框架阶段学习


大数据这方面的知识点自己可以说真的是从零开始的,刚刚开始学那会Linux基本都没用过,心里那个虚啊,而且时间也紧迫,想起来都是一把辛酸泪。


刚刚开始学的时候,看了厦门大学林子雨的《 大数据技术原理与应用》课程,可能这个课程是面对上课的,所以看了一些,感觉对自己帮助不是很大(并不是说课程不好,可能不太适合自己,如果是要了解理论知识,很透彻,但是俺时间紧迫啊),所以就继续在网上找视频,然后发现尚硅谷的培训视频很多人去参加,而且知识点也很齐全,大数据相关组件都有讲课,还有一些项目比较好,所以就找了它相关的视频,看的是2018年的,所以视频不算旧。


来一张推荐系统架构的图,先看看

微信图片_20220426150351.png


一般来说,Flume+Kafka对数据进行采集聚合传输,一方面Spark对实时数据进行处理,传输给相应的数据处理模块(比如实时数据处理的算法模块,Spark也有提供常见的机器学习算法的程序库),另一方面采集的数据也可以放入数据库(HBase、MongoDB等)中,后续MapReduce对离线数据进行离线处理,数据处理完毕用于后续的使用,数据采集处理的流程大概就是这样。如果是推荐系统,实时推荐会给用户产生实时的推荐结果,让用户进行查阅选择,比如你在界面浏览了或者看了新的物品,然后刷新下界面,可能给你展示的东西就有一些变成跟你刚刚浏览的相关了。离线推荐的话主要是对离线数据进行处理,为物品或种类做出相似的推荐,如果后续用户搜索相应的物品时,给用户展示相应的产品,比如你在淘宝搜索大数据书籍,淘宝会给你推荐相关的书籍,这就算是为大数据书籍产生的推荐结果。

微信图片_20220426150356.png


大数据学习路线:Linux -> Hadoop -> Zookeeper -> Hive -> Flume -> Kafka -> HBase -> Scala -> Spark -> 项目 - > Flink( 如果需要Storm,在Spark前面学习,云盘中也加进去了)

微信图片_20220426150401.png


一、Linux(基本操作)


一般我们使用的都是虚拟机来进行操作,所以要安装VM( Virtual Machine),我使用的是CentOS,所以VM和CentOS都要跟着安装好,跟着视频操作,一定要动手实践,将一些Linux基本命令熟练掌握,一些VIM编辑器的命令也要会用,做相应的一些配置,使用SecureCRT来做远程登录操作(也可以使用其他的,自己顺手就行)。再强调一遍,基本操作命令尽量熟练一点,如果一下记不住,打印一些常用的,自己看看,多用多实践,慢慢就会用了。还有一些软件包的下载安装卸载等,跟着操作一遍,熟悉下,后续都会使用,Shell编程可以后续补。


视频:


如果想了解下shell(后面乌班图的可以选择不看)


没有shell讲解


二、Hadoop(重点中的重点)


Hadoop是一个分布式系统基础框架,用于主要解决海量数据的存储和海量数据的分析计算问题,也可以说Hadoop是后续整个集群环境的基础,很多框架的使用都是会依赖于Hadoop。主要是由HDFS、MapReduce、YARN组成。这个部分安装Hadoop,Hadoop的三个主要组成部分是重点,对他们的概念要理解出来,知道他们是做什么的,搭建集群环境,伪分布式模式和完全分布式模式的搭建,重要的是完全分布式的搭建,这些部分一定要自己动手实践,自己搭建集群,仔细仔细再仔细,Hadoop的NameNode,DataNode,YARN的启动关闭命令一定要知道,以及他们的启动关闭顺序要记住,不要搞混。后续视频会有一些案例操作,跟着写代码,做测试,把基本环境都配置好,后续这个集群(完全分布式需要三台虚拟机)要一直使用。


视频:


我开始看过的版本:这个版本b站已经失效了,不过云盘中有给出链接


第二个看过的版本


2019版本


三、Zookeeper


Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。分布式安装ZK,对ZK有一定的了解就可以了,了解它的应用场景,以及内部原理,跟着做一些操作,基本上有一些了解即可。


视频:


我看过的版本


尚硅谷周洋版本(听说挺好)


2019版本


四、Hive(重点)


Hive是基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive的安装,它的数据类型,以及它的数据定义、数据操作有较好的了解,怎么操作表(创建表、删除表,创建什么类型的表,他们有什么不同),怎么操作数据(加载数据,下载数据,对不同的表进行数据操作),对数据的查询一定要进行实践操作,以及对压缩方式和存储格式要有一些了解,用到时不懂也可以去查,最好是能理解清楚。这部分有什么面试可能会问,所以视频后续的面试讲解可以看看,理解清楚。


视频:


我开始看过的版本


第二个看过的版本


2019版本


五、Flume


Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。对于Flume,对它的组成架构,以及对Flume Agent的内部原理要理解清楚,Source、Channel、Sink一定要知道它们的各种类型以及作用,有哪些拓扑结构是常见常用的,例如一对一,单Source、多Channel、多Sink等,它们有什么作用,要理解清楚。还有一个重点,就是对Flume的配置文件一定要了解清楚,不懂的可以上官网查看案例,对于不同的情况,它的配置文件要做相应的修改,才能对数据进行采集处理,视频中的实践案例一定要跟着做。


视频:


我开始看过的版本


第二个看过的版本


2019版本


六、Kafka(重点)


Kafka是一个分布式消息队列,用来缓存数据的。比如说实时计算中可以通过Flume+Kafka对数据进行采集处理之后,Spark Streaming再使用Kafka相应的Topic中的数据,用于后续的计算使用。对于Kafka,要理解Kafka的架构,什么是Kafka,为什么需要Kafka,应用场景。基本的命令行操作要掌握,比如怎么创建删除Topic,怎么通过生产者生成数据,消费者怎么消费数据等基本操作,官网也是有一些案例可以查阅的。


视频:


我看过的版本


2019版本


七、HBase(重点)


HBase是一个分布式的、基于列存储的开源数据库。HBase适合存储PB级别的海量数据,也可以说HBase是很适合大数据的存储的,它是基于列式存储数据的,列族下面可以有非常多的列,列族在创建表的时候就必须指定。所以对HBase的数据结构要有一定的理解,特别是RowKey的设计部分(因为面试被问到过,咳咳,所以点一下),对于它的原理要了解,一些基本操作也要都会,比如创建表,对表的操作,基本的API使用等。


视频:


我看过的版本


2019版本


八、Spark


Spark是快速、易用、通用的大数据分析引擎。一说到Spark,就有一种哪哪都是重点感觉,哈哈。


Spark的组成可以看下图

微信图片_20220426150405.png


Spark是基于内存计算的,对于数据的处理速度要比MapReduce快很多很多,而且数据挖掘这些都是要对数据做迭代式计算,MapReduce对数据的处理方式也不适合,而Spark是可以进行迭代式计算,很适合数据挖掘等场景。Spark的Spark SQL能够对结构化数据进行处理,Spark SQL的DataFrame或DataSet可以作为分布式SQL查询引擎的作用,可以直接使用Hive上的表,对数据进行处理。Spark Streaming主要用于对应用场景中的实时流数据进行处理,支持多种数据源,DStream是Spark Streaming的基础抽象,由一系列RDD组成,每个RDD中存放着一定时间段的数据,再对数据进行处理,而且是基于内存计算,速度快,所以很适合实时数据的处理。Spark MLlib提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据 导入等额外的支持功能。对Spark的核心组件、部署模式(主要是Standalone模式和YARN模式)、通讯架构、任务调度要有一定了解(面试问到了可以说一波),Spark Shuffle要好好理解,还有内存管理要知道,对Spark的内核原理一定要好好理解,不仅面试可能要用,以后工作也是有帮助的。


视频:


我开始看过的版本


第二个看过的版本


2019版本


九、Flink(重点中的重点)


Flink是一个框架和分布式处理引擎,用于对无界(有开始无结束)和有界(有开始有结束)数据流进行有状态计算。现在主要是阿里这种大公司使用的比较多,中国很多公司使用的还是Spark居多,而且Flink基本上都是和Spark很多功能大体上一样的,但是以后Flink和Spark孰强孰弱还有待时间的考验,不过Flink近几年越来越火了这是事实,所以如果有时间有精力的话,可以学一学Flink相关的内容也是很不错的。Spark和Flink主要都是在数据处理方面应用,在数据处理方面的话,离线数据处理:Flink暂时比不上Spark,Spark SQL优点在于可以和Hive进行无缝连接,Spark SQL可以直接使用Hive中的表;Flink暂时做不到这一步,因为官方不支持这一操作,Flink只能将数据读取成自己的表,不能直接使用Hive中的表。对于实时数据的处理:Flink和Spark可以说是平分秋色吧,而且Flink是以事件为驱动对数据进行处理,而Spark是以时间为驱动对数据进行处理,在一些应用场景中,也许Flink的效果比Spark的效果还要好些,因为Flink对数据更加的敏感。比如一秒钟如果触发了成千上万个事件,那么时间驱动型就很难对数据做细致的计算,而事件驱动型可以以事件为单位,一个个事件进行处理,相比而言延迟更低,处理效果更好。还是那句话,虽然现在使用的公司较少,但是有时间接触学习下,也是没有坏处的。


视频:


我看的版本(基础+项目)


项目阶段


其实尚硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。

根据自己情况,选择两到三个项目重点跟着做,理解透彻一点


大数据项目实战


尚硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。根据自己情况,选择两到三个项目重点跟着做,理解透彻一点。相关项目文档资料我已经放到网盘,公众号回复相应关键字获取领取方式。


相关项目、涉及技术框架及其B站链接(B站链接间知乎文章。,主要是为了有些小伙伴网盘速度限制,这样就下载文档资料即可)


1)YouTube项目:Hive


2)微博项目:HBase


3)电商数据分析平台:Spark


4)电信客服系统:Hadoop


5)滴滴系统:Kafka+Storm


6)大数据离线平台:Hadoop+Flume+Hive+HBase


7)电商数仓项目:Hadoop+Zookeeper+Hive+Flume+Kafka+Spark


8)电商推荐系统(类似于电影推荐系统):Hadoop+ZK+Flume+Kafka+Spark+Redis+MongoDB


9)电影推荐系统(2019版也有个一样的电影推荐系统,代码应该类似):Hadoop+ZK+Flume+Kafka+Spark+Redis+MongoDB+ElasticSearch

2019版


10)基于阿里云搭建数据仓库(离线、实时):ECS(日志生产服务器)+Flume+DataHub +MaxCompute/DataWorks +RDS(业务数据)+QuickBI

离线

实时


11)机器学习和推荐系统:项目讲解为上面的电影推荐系统类似


12)实时项目(电商数仓实时):Hive+Kafka+Redis+Nginx+ElasticSearch+Canal


13)手机APP信息统计:Hadoop+ZK+Flume+Kafka+Hive+HBase+Spark(有两个不同版本,详细看项目文档)


旧版本


新版本


14)新闻大数据实时分析可视化系统(私人提供,参考云盘):


Hadoop+Zookeeper+Flume+Kafka+Hive+HBase+Spark+Echarts+Hue+MySQL


15)在线教育项目:Hadoop+Flume+Kafka+Hive+MySQL+Spark


16)基于Flink的电商用户行为数据分析:Kafka+Flink


机器学习


大数据岗位中也是有对算法要求比较高的,就是数据挖掘岗位,相对来说,对机器学习算法有一定要求。这里就不介绍了,有时间可以自己学习机器学习相关的内容,如果你有机器学习的基础,那自然是更好了。


下面是我自己收集的一些资料,有需要的可以看看


机器学习算法学习资料


书籍


书籍部分直接云盘链接保存即可,这里我放两张Java开发和大数据开发我自己的书单(很多,路漫漫,吾将上下而求索~)


Java后端书架:

微信图片_20220426150410.png


大数据书架:

微信图片_20220426150414.png


大概就这些,看完就需要很久了,大部分我也是需要的时候看相应的部分,所以有时间可以好好看下,不然就需要哪一部分看哪一部分,有助于学习即可。


最后



大数据开发也是需要编程基础的,并不是学会使用这些框架怎么样就可以了,所以对于编程语言,数据结构与算法,计算机网络这些基础也是要的,这些基础知识也有助于自己以后的发展,如果是应届生校招的话,面试基本上都是JavaSE和数据结构与算法等的知识点,还有大数据组件相关的知识点,以及对项目的理解,这些都是要自己面试前准备好的,多看面经,多找面试题看,面几次,心里有谱了,后续面试就好了。


不管是从事什么样的计算机相关的岗位,编程都是很重要的,数据结构与算法特别重要,还有就是leetcode等编程网站刷题,提升自己的编程思维,后续笔试面试都要要的。

要将一行行代码看做一叠叠rmb,但是一行行代码能不能转换成一叠叠rmb,自己就一定要:坚持,多敲代码;多敲代码,坚持;坚持


以上纯属个人总结,也许有理解不是很好的地方,每个人都有自己的学习方法,不喜勿喷,谢谢~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
7月前
|
分布式计算 大数据 Java
问我大数据怎么入门,我总结了亲身体验的学习路线推荐给她【推荐收藏】
问我大数据怎么入门,我总结了亲身体验的学习路线推荐给她【推荐收藏】
89 0
|
SQL 存储 分布式计算
大数据学习路线--学习的基本技术
大数据学习路线--学习的基本技术
大数据学习路线--学习的基本技术
|
消息中间件 机器学习/深度学习 存储
从零开始的大数据技术学习路线指南:带你轻松成为大数据开发工程师!2
从零开始的大数据技术学习路线指南:带你轻松成为大数据开发工程师!2
545 0
从零开始的大数据技术学习路线指南:带你轻松成为大数据开发工程师!2
|
SQL 存储 分布式计算
从零开始的大数据技术学习路线指南:带你轻松成为大数据开发工程师!1
从零开始的大数据技术学习路线指南:带你轻松成为大数据开发工程师!1
1347 0
从零开始的大数据技术学习路线指南:带你轻松成为大数据开发工程师!1
|
存储 机器学习/深度学习 SQL
「短视频」进入大数据领域的学习路线是什么?
「短视频」进入大数据领域的学习路线是什么?
|
SQL 分布式计算 资源调度
大数据入门介绍和学习路线
Java 为主。主要做统一数据开发平台、大数据源码级别扩展优化、提供提升开发效率的工具、元数据管理、数据质量管理等。技能要求:Java,Zookeeper,Hadoop,Hive,Spark,Kafka等。
287 0
大数据入门介绍和学习路线
|
人工智能 大数据 vr&ar
使用AR、AI以及大数据改革教育体系——为每位学生打造自己的私人定制学习路线
随着技术的发展,教育行业也面临着变革。以AR、AI以及大数据等工具将帮助我们了解自己的学习习惯,并转变课堂学习方式。
2516 0
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
23天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
181 7