多线程之间通信及线程池

简介: 线程通信 应用场景:生产者和消费者问题 假设仓库中只能存放一件产品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走消费 如果仓库中没有产品,则生产者将产品放入仓库,否则停止生产并等待,直到仓库中的产品被消费者取走为止 如果仓库中放有产品,则消费者可以将产品取走消费,否则停止消费并等待,直到仓

线程通信


  • 应用场景:生产者和消费者问题


  • 假设仓库中只能存放一件产品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走消费


  • 如果仓库中没有产品,则生产者将产品放入仓库,否则停止生产并等待,直到仓库中的产品被消费者取走为止


  • 如果仓库中放有产品,则消费者可以将产品取走消费,否则停止消费并等待,直到仓库中再次放入产品为止


  • 这是一个线程同步问题,生产者和消费者共享同一个资源,并且生产者和消费者之间相互依赖,互为条件。


  • 对于生产者,没有生产产品之前,要通知消费者等待。而生产了产品之后,又需要马上通知消费者消费


  • 对于消费者,在消费之后,要通知生产者已经结束消费,需要生产新的产品以供消费


  • 在生产者消费者问题中,仅有synchronized是不够的


  • synchronized可阻止并发更新同一个共享资源,实现了同步


  • synchronized不能用来实现不同线程之间的消息传递(通信)


  • 解决线程之间通信问题的方法


方法名 作用
wait() 表示线程一直等待,知道其他线程通知,与sleep不同,会释放锁
wait(long timeout) 指定等待的毫秒数
notify() 唤醒一个处于等待状态的线程
notifyAll() 唤醒同一个对象上所有调用wait()方法的线程,优先级别高的线程优先调度


解决方式1


并发协作模型“生产者/消费者模式”--->管程法


  • 生产者:负责生产数据的模块(可能是方法,对象,线程,进程);


  • 消费者:负责处理数据的模块(可能是方法,对象,线程,进程);


  • 缓冲区:消费者不能直接使用生产者的数据,他们之间有个缓冲区,生产者将生产好的数据放入缓冲区,消费者从缓冲区拿出数据



//测试:生产者消费者模型-->利用缓冲区解决:管程法
//生产者,消费者,产品,缓冲区
public class TestPC {
    public static void main(String[] args) {
        SynContainer container = new SynContainer();
        new Productor(container).start();
        new Consumer(container).start();
    }
}
//生产者
class Productor extends Thread{
    SynContainer container;
    public Productor(SynContainer container){
        this.container = container;
    }
    //生产
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            container.push(new Chicken(i));
            System.out.println("生产了"+i+"只鸡");
        }
    }
}
//消费者
class Consumer extends Thread{
    SynContainer container;
    public Consumer(SynContainer container){
        this.container = container;
    }
    //消费
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println("消费了-->"+container.pop().id+"只鸡");
        }
    }
}
//产品
class Chicken{
    int id;//产品编号
    public Chicken(int id) {
        this.id = id;
    }
}
//缓冲区
class SynContainer{
    //需要一个容器大小
    Chicken[] chickens = new Chicken[10];
    //容器计数器
    int count = 0;
    //生产者放入产品
    public synchronized void push(Chicken chicken){
        //如果容器满了,就需要等待消费者消费
        if (count==chickens.length){
            //通知消费者消费,生产者等待
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        //如果没有满,我们就需要丢入产品
        chickens[count] = chicken;
        count++;
        //可以通知消费者消费了
        this.notifyAll();
    }
    //消费者消费产品
    public synchronized Chicken pop(){
        //判断能否消费
        if (count==0){
            //等待生产者生产,消费者等待
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        //如果可以消费
        count--;
        Chicken chicken = chickens[count];
        //吃完了,通知生产者生产
        this.notifyAll();
        return chicken;
    }
}


解决方式2


  • 并发协作模式“生产者/消费者模式”--->信号灯法


//测试生产者消费者问题2:信号灯法,标志位解决
public class TestPC2 {
    public static void main(String[] args) {
        TV tv = new TV();
        new Player(tv).start();
        new Watcher(tv).start();
    }
}
//生产者-->演员
class Player extends Thread{
    TV tv;
    public Player(TV tv){
        this.tv = tv;
    }
    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            if (i%2==0){
                this.tv.play("快乐大本营播放中");
            }else {
                this.tv.play("抖音:记录美好生活");
            }
        }
    }
}
//消费者-->观众
class Watcher extends Thread{
    TV tv;
    public Watcher(TV tv){
        this.tv = tv;
    }
    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            tv.watch();
        }
    }
}
//产品-->节目
class TV{
    //演员表演,观众等待
    //观众观看,演员等待
    String voice;//表演的节目
    boolean flag = true;
    //表演
    public synchronized void play(String voice){
        if (!flag){
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("演员表演了:"+voice);
        //通知观众观看
        this.notifyAll();//通知唤醒
        this.voice = voice;
        this.flag = !this.flag;
    }
    //观看
    public synchronized void watch(){
        if (flag){
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("观看了:"+voice);
        //通知演员表演
        this.notifyAll();
        this.flag = !this.flag;
    }
}


线程池


使用线程池


  • 背景:经常创建和销毁、使用量特别大的资源,比如并发情况下的线程,对性能影响很大。


  • 思路:提前创建好多个线程,放入线程池中,使用时直接获取,使用完放回池中。可以避免频繁创建销毁、实现重复利用。类似生活中的公共交通工具。


  • 好处:


  • 提高响应速度(减少了创建新线程的时间)


  • 降低资源消耗(重复利用线程池中线程,不需要每次都创建)


  • 便于线程管理(...)


  • corePoolSize:核心池的大小


  • maximumPoolSize:最大线程数


  • keepAliveTime:线程没有任务时最多保持多长时间后会终止


  • JDK5.0起提供了线程池相关API:ExexutorServiceExecutors


  • ExecutorService:真正的线程池接口。常见子类ThreadPoolExecutor


  • void execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable


  • Future submit(Callable task):执行任务,有返回值,一般又来执行Callable


  • void shutdown():关闭连接池


  • Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池


import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
//测试线程池
public class TestPool {
    public static void main(String[] args) {
        //1.创建服务,创建线程池
        //newFixedThreadPool 参数为:线程池大小
        ExecutorService service = Executors.newFixedThreadPool(10);
        //执行
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        //2.关闭链接
        service.shutdown();
    }
}
class MyThread implements Runnable{
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName());
    }
}
相关文章
|
4天前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
16 1
|
1月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
113 38
|
1月前
|
Java
.如何根据 CPU 核心数设计线程池线程数量
IO 密集型:核心数*2 计算密集型: 核心数+1 为什么加 1?即使当计算密集型的线程偶尔由于缺失故障或者其他原因而暂停时,这个额外的线程也能确保 CPU 的时钟周期不会被浪费。
49 4
|
2月前
|
Java 调度
[Java]线程生命周期与线程通信
本文详细探讨了线程生命周期与线程通信。文章首先分析了线程的五个基本状态及其转换过程,结合JDK1.8版本的特点进行了深入讲解。接着,通过多个实例介绍了线程通信的几种实现方式,包括使用`volatile`关键字、`Object`类的`wait()`和`notify()`方法、`CountDownLatch`、`ReentrantLock`结合`Condition`以及`LockSupport`等工具。全文旨在帮助读者理解线程管理的核心概念和技术细节。
42 1
[Java]线程生命周期与线程通信
|
1月前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
40 3
|
1月前
|
Java
线程池内部机制:线程的保活与回收策略
【10月更文挑战第24天】 线程池是现代并发编程中管理线程资源的一种高效机制。它不仅能够复用线程,减少创建和销毁线程的开销,还能有效控制并发线程的数量,提高系统资源的利用率。本文将深入探讨线程池中线程的保活和回收机制,帮助你更好地理解和使用线程池。
89 2
|
1月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
109 4
|
1月前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
303 2
|
2月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
25 2
|
2月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
41 2