Flink可靠性的基石-checkpoint机制详细解析 (二)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Flink可靠性的基石-checkpoint机制详细解析

修改State Backend的两种方式


第一种:单任务调整


修改当前任务代码


env.setStateBackend(new FsStateBackend("hdfs://namenode:9000/flink/checkpoints"));

或者new MemoryStateBackend()

或者new RocksDBStateBackend(filebackend, true);【需要添加第三方依赖】


第二种:全局调整


修改flink-conf.yaml


state.backend: filesystem

state.checkpoints.dir: hdfs://namenode:9000/flink/checkpoints


注意:state.backend的值可以是下面几种:jobmanager(MemoryStateBackend), filesystem(FsStateBackend), rocksdb(RocksDBStateBackend)


Checkpoint的高级选项


默认checkpoint功能是disabled的,想要使用的时候需要先启用checkpoint开启之后,默认的checkPointMode是Exactly-once


//配置一秒钟开启一个checkpoint
env.enableCheckpointing(1000)
//指定checkpoint的执行模式
//两种可选:
//CheckpointingMode.EXACTLY_ONCE:默认值
//CheckpointingMode.AT_LEAST_ONCE
env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
一般情况下选择CheckpointingMode.EXACTLY_ONCE,除非场景要求极低的延迟(几毫秒)
注意:如果需要保证EXACTLY_ONCE,source和sink要求必须同时保证EXACTLY_ONCE
//如果程序被cancle,保留以前做的checkpoint
env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
默认情况下,检查点不被保留,仅用于在故障中恢复作业,可以启用外部持久化检查点,同时指定保留策略:
ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:在作业取消时保留检查点,注意,在这种情况下,您必须在取消后手动清理检查点状态
ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION:当作业在被cancel时,删除检查点,检查点仅在作业失败时可用
//设置checkpoint超时时间
env.getCheckpointConfig.setCheckpointTimeout(60000)
//Checkpointing的超时时间,超时时间内没有完成则被终止
//Checkpointing最小时间间隔,用于指定上一个checkpoint完成之后
//最小等多久可以触发另一个checkpoint,当指定这个参数时,maxConcurrentCheckpoints的值为1
env.getCheckpointConfig.setMinPauseBetweenCheckpoints(500)
//设置同一个时间是否可以有多个checkpoint执行
env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
指定运行中的checkpoint最多可以有多少个
env.getCheckpointConfig.setFailOnCheckpointingErrors(true)
用于指定在checkpoint发生异常的时候,是否应该fail该task,默认是true,如果设置为false,则task会拒绝checkpoint然后继续运行


Flink的重启策略


Flink支持不同的重启策略,这些重启策略控制着job失败后如何重启。集群可以通过默认的重启策略来重启,这个默认的重启策略通常在未指定重启策略的情况下使用,而如果Job提交的时候指定了重启策略,这个重启策略就会覆盖掉集群的默认重启策略。


概览


默认的重启策略是通过Flink的 flink-conf.yaml 来指定的,这个配置参数 restart-strategy 定义了哪种策略会被采用。如果checkpoint未启动,就会采用 no restart 策略,如果启动了checkpoint机制,但是未指定重启策略的话,就会采用 fixed-delay 策略,重试 Integer.MAX_VALUE 次。请参考下面的可用重启策略来了解哪些值是支持的。


每个重启策略都有自己的参数来控制它的行为,这些值也可以在配置文件中设置,每个重启策略的描述都包含着各自的配置值信息。


重启策略 重启策略值
Fixed delay fixed-delay
Failure rate failure-rate
No restart None


除了定义一个默认的重启策略之外,你还可以为每一个Job指定它自己的重启策略,这个重启策略可以在 ExecutionEnvironment 中调用 setRestartStrategy() 方法来程序化地调用,注意这种方式同样适用于 StreamExecutionEnvironment。


下面的例子展示了如何为Job设置一个固定延迟重启策略,一旦有失败,系统就会尝试每10秒重启一次,重启3次。


val env = ExecutionEnvironment.getExecutionEnvironment()
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
  3, // 重启次数
  Time.of(10, TimeUnit.SECONDS) // 延迟时间间隔
))


固定延迟重启策略(Fixed Delay Restart Strategy)


固定延迟重启策略会尝试一个给定的次数来重启Job,如果超过了最大的重启次数,Job最终将失败。在连续的两次重启尝试之间,重启策略会等待一个固定的时间。


重启策略可以配置flink-conf.yaml的下面配置参数来启用,作为默认的重启策略:


restart-strategy: fixed-delay
配置参数 描述 默认值
restart-strategy.fixed-delay.attempts 在Job最终宣告失败之前,Flink尝试执行的次数 1,如果启用checkpoint的话是Integer.MAX_VALUE
restart-strategy.fixed-delay.delay 延迟重启意味着一个执行失败之后,并不会立即重启,而是要等待一段时间。 akka.ask.timeout,如果启用checkpoint的话是1s


例子:


restart-strategy.fixed-delay.attempts: 3
restart-strategy.fixed-delay.delay: 10 s


固定延迟重启也可以在程序中设置:


val env = ExecutionEnvironment.getExecutionEnvironment()
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
  3, // 重启次数
  Time.of(10, TimeUnit.SECONDS) // 重启时间间隔
))


失败率重启策略


失败率重启策略在Job失败后会重启,但是超过失败率后,Job会最终被认定失败。在两个连续的重启尝试之间,重启策略会等待一个固定的时间。


失败率重启策略可以在flink-conf.yaml中设置下面的配置参数来启用:


restart-strategy:failure-rate


配置参数 描述 默认值
restart-strategy.failure-rate.max-failures-per-interval 在一个Job认定为失败之前,最大的重启次数 1
restart-strategy.failure-rate.failure-rate-interval 计算失败率的时间间隔 1分钟
restart-strategy.failure-rate.delay 两次连续重启尝试之间的时间间隔 akka.ask.timeout


例子:


restart-strategy.failure-rate.max-failures-per-interval: 3
restart-strategy.failure-rate.failure-rate-interval: 5 min
restart-strategy.failure-rate.delay: 10 s


失败率重启策略也可以在程序中设置:


val env = ExecutionEnvironment.getExecutionEnvironment()
env.setRestartStrategy(RestartStrategies.failureRateRestart(
  3, // 每个测量时间间隔最大失败次数
  Time.of(5, TimeUnit.MINUTES), //失败率测量的时间间隔
  Time.of(10, TimeUnit.SECONDS) // 两次连续重启尝试的时间间隔
))


无重启策略


Job直接失败,不会尝试进行重启


restart-strategy: none


无重启策略也可以在程序中设置


val env = ExecutionEnvironment.getExecutionEnvironment()
env.setRestartStrategy(RestartStrategies.noRestart())
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
108 2
|
8天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
2天前
|
缓存 算法 Oracle
深度干货 如何兼顾性能与可靠性?一文解析YashanDB主备高可用技术
数据库高可用(High Availability,HA)是指在系统遇到故障或异常情况时,能够自动快速地恢复并保持服务可用性的能力。如果数据库只有一个实例,该实例所在的服务器一旦发生故障,那就很难在短时间内恢复服务。长时间的服务中断会造成很大的损失,因此数据库高可用一般通过多实例副本冗余实现,如果一个实例发生故障,则可以将业务转移到另一个实例,快速恢复服务。
深度干货  如何兼顾性能与可靠性?一文解析YashanDB主备高可用技术
|
4天前
|
存储 监控 算法
Flink 四大基石之 Checkpoint 使用详解
Flink 的 Checkpoint 机制通过定期插入 Barrier 将数据流切分并进行快照,确保故障时能从最近的 Checkpoint 恢复,保障数据一致性。Checkpoint 分为精确一次和至少一次两种语义,前者确保每个数据仅处理一次,后者允许重复处理但不会丢失数据。此外,Flink 提供多种重启策略,如固定延迟、失败率和无重启策略,以应对不同场景。SavePoint 是手动触发的 Checkpoint,用于作业升级和迁移。Checkpoint 执行流程包括 Barrier 注入、算子状态快照、Barrier 对齐和完成 Checkpoint。
60 20
|
19天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
75 14
|
1月前
|
PHP 开发者 UED
PHP中的异常处理机制解析####
本文深入探讨了PHP中的异常处理机制,通过实例解析try-catch语句的用法,并对比传统错误处理方式,揭示其在提升代码健壮性与可维护性方面的优势。文章还简要介绍了自定义异常类的创建及其应用场景,为开发者提供实用的技术参考。 ####
|
2月前
|
存储 缓存 监控
后端开发中的缓存机制:深度解析与最佳实践####
本文深入探讨了后端开发中不可或缺的一环——缓存机制,旨在为读者提供一份详尽的指南,涵盖缓存的基本原理、常见类型(如内存缓存、磁盘缓存、分布式缓存等)、主流技术选型(Redis、Memcached、Ehcache等),以及在实际项目中如何根据业务需求设计并实施高效的缓存策略。不同于常规摘要的概述性质,本摘要直接点明文章将围绕“深度解析”与“最佳实践”两大核心展开,既适合初学者构建基础认知框架,也为有经验的开发者提供优化建议与实战技巧。 ####
|
2月前
|
缓存 NoSQL Java
千万级电商线上无阻塞双buffer缓冲优化ID生成机制深度解析
【11月更文挑战第30天】在千万级电商系统中,ID生成机制是核心基础设施之一。一个高效、可靠的ID生成系统对于保障系统的稳定性和性能至关重要。本文将深入探讨一种在千万级电商线上广泛应用的ID生成机制——无阻塞双buffer缓冲优化方案。本文从概述、功能点、背景、业务点、底层原理等多个维度进行解析,并通过Java语言实现多个示例,指出各自实践的优缺点。希望给需要的同学提供一些参考。
57 7
|
1月前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
2月前
|
Java 开发者 Spring
深入解析:Spring AOP的底层实现机制
在现代软件开发中,Spring框架的AOP(面向切面编程)功能因其能够有效分离横切关注点(如日志记录、事务管理等)而备受青睐。本文将深入探讨Spring AOP的底层原理,揭示其如何通过动态代理技术实现方法的增强。
91 8

热门文章

最新文章

推荐镜像

更多