【机器学习中的矩阵求导】(五)矩阵对矩阵求导

简介: 假如有p×q矩阵F要对m×n的矩阵X求导,根据第一篇求导布局的定义,矩阵F的pq个元素要对矩阵X的mn个值分别求导,所以求导结果一共有mnpq个,求导的结果如何排列:

一、矩阵对矩阵求导的定义

假如有p×q矩阵F要对m×n的矩阵X求导,根据第一篇求导布局的定义,矩阵F的pq个元素要对矩阵X的mn个值分别求导,所以求导结果一共有mnpq个,求导的结果如何排列:


1.1 两种求导的定义:

(1)矩阵 F FF 对矩阵 X XX中的每个值 X i j X_{i j}X

ij

 求导,这样对于矩阵 X XX 每一个位置 ( i , j ) (i, j )(i,j)求导得到一个矩阵

image.png

image.png

image.png

image.png

相关文章
|
1月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
54 8
|
5月前
|
机器学习/深度学习 Serverless Python
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
|
6月前
|
机器学习/深度学习 搜索推荐 算法
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
|
7月前
|
机器学习/深度学习 Python
【Python 机器学习专栏】混淆矩阵与 ROC 曲线分析
【4月更文挑战第30天】本文介绍了机器学习中评估模型性能的两种工具——混淆矩阵和ROC曲线。混淆矩阵显示了模型在不同类别上的预测情况,包括真正例、假正例、真反例和假反例,帮助评估模型错误类型和数量。ROC曲线则通过假正率和真正率展示了模型的二分类性能,曲线越接近左上角,性能越好。文章还提供了Python中计算混淆矩阵和ROC曲线的代码示例,强调它们在模型选择、参数调整和理解模型行为中的应用价值。
236 0
|
7月前
|
机器学习/深度学习 搜索推荐 算法
python机器学习:推荐系统实现(以矩阵分解来协同过滤)
python机器学习:推荐系统实现(以矩阵分解来协同过滤)
|
7月前
|
机器学习/深度学习 JavaScript Python
GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)
GEE机器学习——混淆矩阵Classifier.confusionMatrix()和errorMatrix()和exlain()的用法(js和python代码)
194 0
|
7月前
|
机器学习/深度学习 人工智能 算法
【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>批量梯度下降&矩阵和向量运算概述
|
机器学习/深度学习 监控 PyTorch
机器学习 - 混淆矩阵:技术与实战全方位解析
机器学习 - 混淆矩阵:技术与实战全方位解析
561 0
|
机器学习/深度学习
【吴恩达机器学习笔记】三、矩阵
【吴恩达机器学习笔记】三、矩阵
86 0
|
机器学习/深度学习 算法
【机器学习】分类模型评价指标(混淆矩阵、ROC)(已修改,放心看)
【机器学习】分类模型评价指标(混淆矩阵、ROC)(已修改,放心看)
200 0