一文读懂密码学中的证书

简介: 一文读懂密码学中的证书

一文读懂密码学中的证书


之前的文章中,我们讲到了数字签名,数字签名的作用就是防止篡改和伪装,并且能够防止否认。但是要正确运用数字签名技术还有一个非常大的前提,那就是用来验证签名的公钥必须真正的属于发送者。


如果你获取到的公钥是伪造的,那么不管你的签名算法多完美,也是会得到错误的结果。

那么我们怎么才能安全的获得发送者的公钥呢?这里就需要使用到证书了。所谓证书就是通过第三方的可信机构对发送者的公钥进行签名而得到的。


这里有两个概念:公钥证书(Public-Key Certificate, PKC)和认证机构(Certification Authority, CA)。熟悉区块链的朋友应该经常会听到CA这个名词,CA就是这里的认证机构。


证书的例子


我们看一个实际中可能会遇到的例子:


假如A要向B发送一条消息,这条消息希望使用B的公钥来加密,但是A事先无法知道B的公钥到底是什么,那么可以使用下面的证书架构:


image.png

  1. 在第一步,B需要生成自己的密钥对,然后将公钥注册到CA中。这里CA就是一个第三方的可信赖的机构。


  1. CA获得到了B的公钥之后,使用自己的私钥对B的公钥进行签名,得到证书。


  1. A从CA获得到证书和CA的公钥(CA是个可信赖机构,可以从公共站点中获取),并使用CA的公钥来验证证书签名的合法性。


  1. A获得了B的公钥,使用B的公钥加密消息。


  1. B用自己的私钥解密消息,得到明文。


好了,这就是一个最简单的证书使用的例子。


证书的标准和生成


因为证书是由认证机构颁发的,使用者需要对其进行验证,那么就需要一个标准的证书格式来方便使用者使用。最广泛的一个证书标准格式是由ITU(International Telecommunication Union)和ISO(International Organization for Standardization)制定的X.509规范。


x.509有很多扩展格式包括:DER、CRT、CER、PEM等。他们在不同的环境中有不同的用处。


那么怎么生成证书呢?可以借助第三方工具,也可以使用命令行命令比如:openssl来生成。具体的生成命令这里就不细讲了。


PKI


有了证书的格式,是不是就可以实际使用证书了呢?


其实这还是不够的,我们还需要定义证书该由谁来颁发,如何颁发,如果作废证书等。而PKI(Public-Key Infrastructure)公钥基础设施就是为了有效的使用证书而制定的一系列规范和协议。


PKI的组成主要有三部分:


  1. 用户

用户是使用PKI的人,也就是需要借助CA来发布自己的公钥和获取别人公钥的人。

  1. 认证机构


认证机构就是CA了,它是对证书进行管理的人。CA除了生成证书之外,还有一个非常重要的工作就是作废证书。


因为用户有可能会丢失密钥,或者出于特殊的原因,废弃掉某些证书。那么就可以向CA发起一个作废请求。而作废的证书会被保存在CRL中。CRL就是对外的证书废弃列表。用户在使用证书的时候必须首先查看该证书是否在CRL列表中。如果在则该证书不能够被使用。


  1. 仓库

仓库是一个保存证书的数据库,用户注册之后生成的证书都存在仓库中,以供其他的用户获取使用。


CA的层级结构


我们在Fabric中有了解到有个root CA的概念,这是什么意思呢?


我们从上面的介绍可以知道,其实CA不仅仅可以由机构来担任,任何人只要会对公钥进行签名都可以构建CA。


如果是一个很大的机构要构建CA,比如一个总公司要构建CA,那么它可以先构建一个root CA,然后再在root CA之下构建子CA,这些子CA来负责底层具体用户的证书颁发。


对证书的攻击


因为证书是基于数字签名技术,所以所有基于数字签名技术的攻击都适用于证书。


这里主要针对于PKI体系的攻击做个介绍:


  1. 在公钥注册之前替换公钥。


用户B如果想生成证书的话,需要在CA注册,并且将自己的公钥提交到CA。那么在公钥提交之前,可能会被恶意替换。


  1. 窃取认证机构的私钥


所有的用户公钥都是由CA的私钥做签名的,如果CA的私钥被盗的话,那么所有的证书都是不安全的。


CA其实是一个中心化的机构,中心化的机构往往都会出现这样的问题。攻破一个就攻破了所有。


  1. 伪装成认证机构


攻击者可以伪装成认证机构让用户上当。所以用户在注册的时候一定要小心。


  1. CRL时间差攻击


如果B的密钥丢了,那么他会向CA提交一个废弃申请,但是在提交申请到申请生效,到CRL生成直接有一个时间差,这段时间内废弃的密钥仍然可以合法使用。


相关文章
|
4月前
|
算法 安全 关系型数据库
密码学系列之七:数字签名
密码学系列之七:数字签名
|
Rust 算法 数据安全/隐私保护
【密码学】一文读懂XTEA加密
本篇文章,我们来看一下上一次讲过的TEA加密算法的一个升级版XTEA, 相比于TEA, XTEA的安全性显然是更高的,其中的过程要比TEA稍微复杂一点点。
1172 0
【密码学】一文读懂XTEA加密
|
Rust 算法 网络安全
【密码学】一文读懂CMAC
介于上一篇文章比较水,然后这个和上一篇也比较相似,CMAC是为了解决DAA当中安全性不足的问题而出现的,这个算法一共有三个密钥,K, K1, K2, 其中K1和K2可以由K导出,接下来就来一起看一下CMAC的具体过程吧,这一篇文章其实也不长。
3428 0
【密码学】一文读懂CMAC
|
Web App开发 Rust 算法
【密码学】一文读懂ChaCha20
好久没写新的加密算法的原理了, 这次所选取的加密算法结构比较简单, 一起来看一下吧。
6964 0
【密码学】一文读懂ChaCha20
|
Rust 算法 安全
【密码学】一文读懂MurMurHash2
上次我们聊过了一代的MurMurHash算法,是的,我又来水文章了,今天呢,接着来聊一下二代的MurMurHash算法,二代算法的整体结构实际上和一代算法差不太多,只是对于每一轮数据的处理过程当中的运算有一些差异,算法的来源依然是来自于Google官网给提供的源码,对着源码看的结构,对于这个算法呢,有两个版本,一个是32位的,一个是64位的,对于32位的算法和64位的算法,区别在于两个初始的魔数不同,整体运算过程还是十分相似的。
2034 0
【密码学】一文读懂MurMurHash2
|
Rust 算法 Go
【密码学】一文读懂MurMurHash3
本文应该是MurMurHash算法介绍的最后一篇,来一起看一下最新的MurMurHash算法的具体过程,对于最新的算法来说,整个流程和之前的其实也比较相似,这里从维基百科当中找到了伪代码,也就不贴出来Google官方给出的推荐代码了,先来看一下维基百科给出的伪代码,这里只有32位的伪代码。
1881 0
【密码学】一文读懂MurMurHash3
|
3月前
|
存储 安全 API
技术经验解读:公钥和私钥的区别
技术经验解读:公钥和私钥的区别
23 0
|
2月前
|
安全 算法 Java
密码学基础知识与加密算法解析
密码学基础知识与加密算法解析
|
算法 安全 Go
【密码学】一文读懂HKDF
我这又来水一篇文章,来聊一下HKDF(基于HMAC的密钥导出函数)。密钥派生函数是密钥管理的组成部分,他的目标是通过一些初始的数据派生出来密码学安全的随机密钥。
2982 1
【密码学】一文读懂HKDF
|
算法 安全 数据安全/隐私保护
【密码学】 一篇文章讲透数字签名
数字签名(又称公钥数字签名)是只有信息的发送者才能产生的别人无法伪造的一段数字串,这段数字串同时也是对信息的发送者发送信息真实性的一个有效证明。它是一种类似写在纸上的普通的物理签名,但是在使用了公钥加密领域的技术来实现的,用于鉴别数字信息的方法。一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证。数字签名是非对称密钥加密技术与数字摘要技术的应用。数字签名可以识别消息是否被篡改, 并验证消息的可靠性, 也可以防止否认。
641 0
【密码学】 一篇文章讲透数字签名