2、根据非主键字段排序的分页查询
再看一个根据非主键字段排序的分页查询,SQL 如下:
select * from employees order by name limit 90000,5;
explain select * from employees order by name limit 90000,5;
发现并没有使用 name 字段的索引(key 字段对应的值为 null),具体原因:扫描整个索引并查找到没索引的行(可能要遍历多个索引树)的成本比扫描全表的成本更高,所以优化器放弃使用索引。 知道不走索引的原因,那么怎么优化呢? 其实关键是让排序时返回的字段尽可能少,所以可以让排序和分页操作先查出主键,然后根据主键查到对应的记录,SQL改写如下
select * from employees e inner join (select id from employees order by name limit 90000,5) ed on e.id = ed.id;
需要的结果与原 SQL 一致,执行时间减少了一半以上,我们再对比优化前后sql的执行计划:
explain select * from employees e inner join (select id from employees order by name limit 90000,5) ed on e.id = ed.id;
原 SQL 使用的是 filesort 排序,而优化后的 SQL 使用的是索引排序。
连接 Join 优化
数据准备:
-- 示例表: CREATE TABLE `t1` ( `id` int(11) NOT NULL AUTO_INCREMENT, `a` int(11) DEFAULT NULL, `b` int(11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `idx_a` (`a`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; create table t2 like t1; -- 插入一些示例数据 -- 往t1表插入1万行记录 drop procedure if exists insert_t1; delimiter ;; create procedure insert_t1() begin declare i int; set i=1; while(i<=10000)do insert into t1(a,b) values(i,i); set i=i+1; end while; end;; delimiter ; call insert_t1(); -- 往t2表插入100行记录 drop procedure if exists insert_t2; delimiter ;; create procedure insert_t2() begin declare i int; set i=1; while(i<=100)do insert into t2(a,b) values(i,i); set i=i+1; end while; end;; delimiter ; call insert_t2();
mysql 的表关联常见的两种算法
- Nested-Loop Join 算法
- Block Nested-Loop Join 算法
1、 嵌套循环连接 Nested-Loop Join(NLJ) 算法
一次一行循环地从第一张表(称为驱动表)中读取行,在这行数据中取到关联字段,根据关联字段在另一张表(被驱动表)里取出满足条件的行,然后取出两张表的结果合集。
mysql> explain select * from t1 inner join t2 on t1.a = t2.a; +----+-------------+-------+------------+------+---------------+-------+---------+-----------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+-------+---------+-----------+------+----------+-------------+ | 1 | SIMPLE | t2 | NULL | ALL | idx_a | NULL | NULL | NULL | 100 | 100.00 | Using where | | 1 | SIMPLE | t1 | NULL | ref | idx_a | idx_a | 5 | oemp.t2.a | 1 | 100.00 | NULL | +----+-------------+-------+------------+------+---------------+-------+---------+-----------+------+----------+-------------+ 2 rows in set, 1 warning (0.01 sec)
从执行计划中可以看到这些信息:
- 驱动表是 t2,被驱动表是 t1。先执行的就是驱动表(执行计划结果的id如果一样则按从上到下顺序执行sql);优化器一般会优先选择**小表做驱动表,**用where条件过滤完驱动表,然后再跟被驱动表做关联查询。所以使用 inner join 时,排在前面的表并不一定就是驱动表。
- 当使用left join时,左表是驱动表,右表是被驱动表,当使用right join时,右表时驱动表,左表是被驱动表,当使用join时,mysql会选择数据量比较小的表作为驱动表,大表作为被驱动表。
- 使用了 NLJ算法。一般 join 语句中,如果执行计划 Extra 中未出现 Using join buffer 则表示使用的 join 算法是 NLJ。
上面sql的大致流程如下:
- 从表 t2 中读取一行数据(如果t2表有查询过滤条件的,用先用条件过滤完,再从过滤结果里取出一行数据);
- 从第 1 步的数据中,取出关联字段 a,到表 t1 中查找;
- 取出表 t1 中满足条件的行,跟 t2 中获取到的结果合并,作为结果返回给客户端;
- 重复上面 3 步。
整个过程会读取 t2 表的所有数据(扫描100行),然后遍历这每行数据中字段 a 的值,根据 t2 表中 a 的值索引扫描 t1 表中的对应行(扫描100次 t1 表的索引,1次扫描可以认为最终只扫描 t1 表一行完整数据,也就是总共 t1 表也扫描了100行)。因此整个过程扫描了** 200 行**。 如果被驱动表的关联字段没索引,使用NLJ算法性能会比较低(下面有详细解释),mysql会选择Block Nested-Loop Join算法。
2、 基于块的嵌套循环连接 Block Nested-Loop Join(BNL)算法
把驱动表的数据读入到 join_buffer 中,然后扫描被驱动表,把被驱动表每一行取出来跟 join_buffer 中的数据做对比。
mysql> EXPLAIN select * from t1 inner join t2 on t1.b= t2.b; +----+-------------+-------+------------+------+---------------+------+---------+------+-------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+-------+----------+----------------------------------------------------+ | 1 | SIMPLE | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL | | 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 10337 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+------+---------------+------+---------+------+-------+----------+----------------------------------------------------+ 2 rows in set, 1 warning (0.00 sec)
Extra 中 的Using join buffer (Block Nested Loop)说明该关联查询使用的是 BNL 算法。上面sql的大致流程如下:
- 把 t2 的所有数据放入到** join_buffer** 中
- 把表 t1 中每一行取出来,跟 join_buffer 中的数据做对比
- 返回满足 join 条件的数据
整个过程对表 t1 和 t2 都做了一次全表扫描,因此扫描的总行数为10000(表 t1 的数据总量) + 100(表 t2 的数据总量) = 10100。并且 join_buffer 里的数据是无序的,因此对表 t1 中的每一行,都要做 100 次判断,所以内存中的判断次数是 100 * 10000= 100 万次。 这个例子里表 t2 才 100 行,要是表 t2 是一个大表,join_buffer 放不下怎么办呢?· join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。
如果放不下表 t2 的所有数据话,策略很简单,就是分段放。 比如 t2 表有1000行记录,join_buffer 一次只能放800行数据,那么执行过程就是先往join_buffer 里放800行记录,然后从 t1 表里取数据跟 join_buffer 中数据对比得到部分结果,然后清空join_buffer ,再放入 t2 表剩余200行记录,再次从 t1 表里取数据跟 join_buffer 中数据对比。所以就多扫了一次 t1 表。
被驱动表的关联字段没索引为什么要选择使用 BNL 算法而不使用 Nested-Loop Join 呢?如果上面第二条sql使用 Nested-Loop Join,那么扫描行数为 100 * 10000 = 100万次,这个是磁盘扫描。 很显然,用BNL磁盘扫描次数少很多,相比于磁盘扫描,BNL的内存计算会快得多。 因此MySQL对于被驱动表的关联字段没索引的关联查询,一般都会使用 BNL 算法。如果有索引一般选择 NLJ 算法,有索引的情况下 NLJ 算法比 BNL算法性能更高
对于关联sql的优化
- 关联字段加索引,让mysql做join操作时尽量选择NLJ算法,驱动表因为需要全部查询出来,所以过滤的条件也尽量要走索引,避免全表扫描,总之,能走索引的过滤条件尽量都走索引
- 小表驱动大表,写多表连接sql时如果明确知道哪张表是小表可以用straight_join写法固定连接驱动方式,省去mysql优化器自己判断的时间
straight_join解释:straight_join功能同join类似,但能让左边的表来驱动右边的表,能改表优化器对于联表查询的执行顺序。 比如:select * from t2 straight_join t1 on t2.a = t1.a; 代表指定mysql选着 t2 表作为驱动表。
- straight_join只适用于inner join,并不适用于left join,right join。(因为left join,right join已经代表指定了表的执行顺序)
- 尽可能让优化器去判断,因为大部分情况下mysql优化器是比人要聪明的。使用straight_join一定要慎重,因为部分情况下人为指定的执行顺序并不一定会比优化引擎要靠谱。
对于小表定义的明确在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与 join 的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。