[路飞]_leetcode-690-员工的重要性

简介: leetcode-690-员工的重要性

网络异常,图片无法展示
|


「这是我参与2022首次更文挑战的第37天,活动详情查看:2022首次更文挑战


[题目地址]


给定一个保存员工信息的数据结构,它包含了员工 唯一的 id重要度直系下属的 id


比如,员工 1 是员工 2 的领导,员工 2 是员工 3 的领导。他们相应的重要度为 15 , 10 , 5 。那么员工 1 的数据结构是 [1, 15, [2]] ,员工 2的 数据结构是 [2, 10, [3]] ,员工 3 的数据结构是 [3, 5, []] 。注意虽然员工 3 也是员工 1 的一个下属,但是由于 并不是直系 下属,因此没有体现在员工 1 的数据结构中。


现在输入一个公司的所有员工信息,以及单个员工 id ,返回这个员工和他所有下属的重要度之和。


示例:


输入: [[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1
输出: 11
解释:
员工 1 自身的重要度是 5 ,他有两个直系下属 2 和 3 ,而且 2 和 3 的重要度均为 3 。因此员工 1 的总重要度是 5 + 3 + 3 = 11 。
复制代码


提示:


  • 一个员工最多有一个 直系 领导,但是可以有多个 直系 下属
  • 员工数量不超过 2000 。


递归


解题思路


本题解题思路其实很简单,具体如下:


  1. 找到给定 id 对应员工的数据,初始化结果值为当前员工的 重要度。
  2. 遍历当前员工的 直系下属列表,获取每一个下属的数据,结果值累加他们的重要度,然后分别对他们重复当前步骤。


由以上解题思路我们很容易就想到了递归解题,但是在写代码之前还要讲一个优化点。


这里我们需要频繁的根据 id 获取对应员工的数据,如果每次循环显然太低效了,所以我们可以遍历输入的员工信息数组,做一个 Map 记录 id 到对应员工数据的映射,这样就可以通过 id 快速获取到对应的数据了,这也是 Vue、Reactdiff 过程中使用的一个技巧。


代码实现


var GetImportance = function (employees, id) {
  // 利用 Map 记录 id 到数据的映射,方便后续获取数据
  const map = new Map()
  for (let i = 0; i < employees.length; i++) {
    const { id, importance, subordinates } = employees[i]
    map.set(id, [importance, subordinates])
  }
  // 初始化结果值为 0
  let res = 0
  // 递归计算方法
  function calc(item) {
    // 结果值累加当前员工数据的重要性
    res += item[0]
    // 遍历当前员工的直系下属列表
    for (let i = 0; i < item[1].length; i++) {
      // 对每个直系下属的数据进行递归处理
      calc(map.get(item[1][i]))
    }
  }
  // 调用递归函数,并传入给定员工的数据
  calc(map.get(id))
  // 返回结果
  return res
}
复制代码


队列


解题思路


和递归解题的思路是类似的,只不过这里我们使用队列存储要处理的员工的数据。


每次从队首取出一个员工的数据,处理当前员工的数据的同时,将其直系下属的数据放入队列,这样,当队列为空,就处理完了所有要处理的员工的数据。


代码实现


var GetImportance = function (employees, id) {
  // 利用 Map 记录 id 到数据的映射,方便后续获取数据
  const map = new Map()
  for (let i = 0; i < employees.length; i++) {
    const { id, importance, subordinates } = employees[i]
    map.set(id, [importance, subordinates])
  }
  // 初始化结果值为 0
  let res = 0
  // 初始化队列
  const list = [map.get(id)]
  // 处理队列中的数据,直到队列为空
  while (list.length) {
    // 获取队首数据
    const top = list.shift()
    // 累加重要度
    res += top[0]
    // 将其直系下属的数据入队
    for (let i = 0; i < top[1].length; i++) {
      list.push(map.get(top[1][i]))
    }
  }
  // 返回结果
  return res
}
复制代码



解题思路


和队列解题的思路是类似的,只不过这里我们使用栈存储要处理的员工的数据。


每次从栈顶取出一个员工的数据,处理当前员工的数据的同时,将其直系下属的数据压入栈中,这样,当栈为空,就处理完了所有要处理的员工的数据。


代码实现


var GetImportance = function (employees, id) {
  // 利用 Map 记录 id 到数据的映射,方便后续获取数据
  const map = new Map()
  for (let i = 0; i < employees.length; i++) {
    const { id, importance, subordinates } = employees[i]
    map.set(id, [importance, subordinates])
  }
  // 初始化结果值为 0
  let res = 0
  // 初始化栈
  const stack = [map.get(id)]
  // 处理栈中的数据,直到栈为空
  while (stack.length) {
    // 取出栈顶元素
    const top = stack.pop()
    // 累加重要度
    res += top[0]
    // 将其直系下属的数据入栈
    for (let i = 0; i < top[1].length; i++) {
      stack.push(map.get(top[1][i]))
    }
  }
  // 返回结果
  return res
}
复制代码


至此我们就完成了 leetcode-690-员工的重要性


如有任何问题或建议,欢迎留言讨论!👏🏻👏🏻👏🏻

相关文章
LeetCode contest 189 5412. 在既定时间做作业的学生人数
LeetCode contest 189 5412. 在既定时间做作业的学生人数
|
人工智能 BI